Monatsheftefür
 Mathematik

© Springer-Verlag 1994
Printed in Austria

On the Dimensions of Automorphism Groups of Eight-Dimensional Double Loops

By
Richard Bödi, Tübingen

(Received 16 February 1993)

Abstract

Let \mathscr{D} be an eight-dimensional, locally compact, connected double loop. It is proved that the dimension of the automorphism group Aut \mathscr{D} with respect to the compact-open topology is at most 16 .

Throughout this paper, let \mathscr{D} denote a locally compact, connected double loop and let Γ be a closed subgroup of the full automorphism group of \mathscr{X}, which is taken with the compact-open topology. By [14] and [9, XI.8.5], the (covering) dimension of \mathscr{D} is $1,2,4,8$, or, possibly, ∞. Excepting the appendix and Lemma (1.1), the dimension of \mathscr{D} is always assumed to be eight. By [2], the group Γ is a locally compact transformation group of \mathscr{D} and so the covering dimension coincides with both inductive dimensions (see [18, Thm. 2.1]). The same is true for the double loop \mathscr{D} (see Lemma (3.1) of the appendix). In the case where \mathscr{D} is an eight-dimensional ternary field, H. Salzmann has shown in [21] that either the connected component of Γ is isomorphic to the compact exceptional simple Lie group G_{2}, or $\operatorname{dim} \Gamma<14$. This result depends on a compactness criterion for the group Γ (see [21, (2.2)]). For double loops such a criterion is not yet known.

For a subset $M \subseteq \mathscr{D}$, the smallest closed sub-double-loop of \mathscr{D} containing M is denoted by $\langle M\rangle$. The double loop $\langle M\rangle$ is said to be generated by M. If $\langle M\rangle \neq \mathscr{D}$, then $\operatorname{dim}\langle M\rangle \in\{0,1,2,4\}$ by the above result. Note that no example of a locally compact, connected double loop containing a 0 -dimensional double loop is known. We shall call $\mathscr{E}:=\langle 1\rangle$ the prime double loop of \mathscr{D}. For any subgroup Φ of Γ, we denote by \mathscr{F}_{Φ} the set of all those elements of \mathscr{D} that are fixed by every automorphism $\varphi \in \Phi$. Clearly, \mathscr{F}_{Φ} is a closed sub-double-loop of \mathscr{D}. If Φ leaves a sub-double-loop \mathscr{H} of \mathscr{D} invariant, it induces on
\mathscr{H} an automorphism group $\left.\Phi\right|_{\mathscr{H}}$, see also (3.2) of the appendix. We shall write $\Gamma_{[\mathscr{H}]}$ for the (closed) subgroup of Γ that fixes \mathscr{H} pointwise. The one-point compactification $\mathscr{D} \cup\{\infty\}$ of \mathscr{D} is denoted by $\hat{\mathscr{D}}$; it is homotopy equivalent to \mathbb{S}_{8}, see [14] and [9, XI.8.5]. All occurring homology groups are assumed to be singular homology groups with coefficient domain \mathbb{Z}, whereas the cohomology groups are used in the sense of Alexander-Spanier-Čech (see e.g. [24, Chap. 6, Sect. 4] or [15, Chapt. IX, §6]). Reduced (co-)homology groups are written with a tilde on top. When speaking about dimension in general, we always mean the covering dimension dim. Unless stated otherwise, we may assume by the sum theorem (see $[19, \S 3,2.5]$) that the group Γ is connected, since we are only interested in the topological dimension of Γ. The center of Γ is denoted by $Z(\Gamma)$. We use the symbol \mathbb{T} for the circle group.

1. The Dimensions of Γ-Orbits

To obtain upper bounds for $\operatorname{dim} \Gamma$, we first have to establish non-trivial upper bounds for the dimensions of Γ-orbits. The following lemma generalizes a result of H. Salzmann [22].
1.1. Lemma. Let $\operatorname{dim} \mathscr{D} \geqslant 2$. For any element $c \in \mathscr{D}$ which generates a two-dimensional sub-double-loop of \mathscr{D}, the inequality

$$
\operatorname{dim} c^{\Gamma} \leqslant \operatorname{dim} \mathscr{D}-2
$$

holds.
Proof. Let $\mathscr{C}:=\langle c\rangle$ be a two-dimensional sub-double-loop. We may assume that $c \notin \mathscr{F}{ }_{\Gamma}$, else the inequality stated in the lemma holds trivially. Then $\mathscr{F}:=\mathscr{F}_{\Gamma} \cap \mathscr{C}<\mathscr{C}$ and therefore $\operatorname{dim} \mathscr{F}=1$ by [9, XI.9.2]. Moreover, the sub-double-loop \mathscr{C} is generated by any element of the set $\mathscr{C} \backslash \mathscr{F}$. Consider the continuous map

$$
\eta: \mathscr{C} \backslash \mathscr{F} \times \Gamma \rightarrow \mathscr{D}:(x, \gamma) \mapsto x^{\gamma^{-1}} .
$$

Because for any element $x \in \mathscr{D}$ the preimage $\eta^{\leftarrow}(x)$ is a closed subset of $\mathscr{C} \backslash \mathscr{F} \times \Gamma$, the monotony theorem (see [19, §6, 6.2]) implies that

$$
\operatorname{dim} \eta^{+}(x) \leqslant \operatorname{dim}(\mathscr{C} \backslash \mathscr{F} \times \Gamma) .
$$

Since $\operatorname{dim}\langle c\rangle=2$ and $\operatorname{dim}\langle M\rangle \in\{2,4,8\}$ if $c \in M$, we can find two elements $x, y \in \mathscr{D}$ such that $\mathscr{D}=\langle c, x, y\rangle$. Thus, the stabilizer $\Gamma_{c, x, y}$ is trivial and we conclude that $\operatorname{dim} \Gamma \leqslant 3 \operatorname{dim} \mathscr{D}<\infty$ by repeated application of the dimension formula [10]. Hence, we have $\operatorname{dim}(\mathscr{C} \backslash \mathscr{F} \times$
$\times \Gamma)<\infty$. In particular, there is some element $d \in \mathscr{D}$ with $\operatorname{dim} \eta^{+}(d)=$
$=\operatorname{dim} \eta:=\sup _{x \in \mathscr{A}} \operatorname{dim} \eta^{+}(x)$. Select arbitrary compact neighborhoods $U \subseteq \mathscr{C} \backslash \mathscr{F}$ and $\Omega=\Omega^{-1} \subseteq \Gamma$, and let η^{*} be the restriction of η to $U \times \Omega$. Since $U \times \Omega$ is compact, the map $\eta^{*}: U \times \Omega \rightarrow U^{\Omega}$ is a closed surjection, and thus we obtain from [19, $\S 9,2.6]$ the inequality

$$
\operatorname{dim}(U \times \Omega) \leqslant \operatorname{dim} U^{\Omega}+\operatorname{dim} \eta^{*} .
$$

Using the sum theorem $[19, \S 3,2.5]$ and Lemma (3.1) of the appendix, this yields

$$
\operatorname{dim} \mathscr{C}+\operatorname{dim} \Gamma=\operatorname{dim} U+\operatorname{dim} \Omega=\operatorname{dim}(U \times \Omega) \leqslant \operatorname{dim} \mathscr{D}+\operatorname{dim} \eta^{*} .
$$

In particular, we have

$$
\operatorname{dim} \Gamma-\operatorname{dim} \eta^{*} \leqslant \operatorname{dim} \mathscr{D}-2 .
$$

Thus we have to prove the inequality $\operatorname{dim} \eta^{*} \leqslant \operatorname{dim} \Gamma_{c}$, since $\operatorname{dim} \Gamma=$ $=\operatorname{dim} \Gamma_{c}+\operatorname{dim} c^{\Gamma}$ holds by [10]. Moreover, it is sufficient to verify that

$$
\operatorname{dim} \eta^{\leftarrow}(d) \leqslant \operatorname{dim} \Gamma_{c}
$$

because we have $\operatorname{dim} \eta^{*} \leqslant \operatorname{dim} \eta=\operatorname{dim} \eta^{-}(d)$. Fix an element $b \in d^{\Gamma} \cap$ $\cap \mathscr{C} \backslash \mathscr{F}$. Then the sub-double-loop \mathscr{C} is invariant under an automorphism $\gamma \in \Gamma$ if and only if the element b^{γ} lies in \mathscr{C}, since \mathscr{C} is generated by any element $x \in \mathscr{C} \backslash \mathscr{F}$. Because a connected twodimensional double loop has at most two continuous automorphisms (see [9, XI.9.3]), the set $\mathscr{C} \cap b^{\Gamma}$ thus contains at most two elements b and b^{\prime}. Select $\beta \in \Gamma$ with $b^{\beta}=b^{\prime}$ and choose an automorphism $\delta \in \Gamma$ with $b^{\delta-1}=d$. Setting

$$
A_{1}:=\left\{(b, \gamma) \in\{b\} \times \Gamma \mid b=b^{\delta^{-1} \gamma}\right\}
$$

and

$$
A_{2}:=\left\{\left(b^{\prime}, \gamma\right) \in\left\{b^{\prime}\right\} \times \Gamma \mid b^{\prime}=b^{\delta^{-1} \gamma}\right\}
$$

we obtain

$$
\eta^{\leftarrow}(d)=A_{1} \cup A_{2} .
$$

The sets A_{1} and A_{2} have identical dimensions, because they are homeomorphic via the map $(b, \gamma) \mapsto\left(b^{\beta}, \gamma^{\beta}\right)$. Thus the sum theorem yields that $\operatorname{dim} \eta^{+}(d)=\operatorname{dim} A_{1}$. The set A_{1} is homeomorphic to $\left\{\gamma \in \Gamma \mid b=b^{\delta^{-1} \gamma}\right\}=\left\{\alpha \in \delta^{-1} \Gamma \mid b=b^{\alpha}\right\} \approx \Gamma_{b}$. Finally, we have $\Gamma_{b}=\Gamma_{c}$, because $\mathscr{C}=\langle b\rangle=\langle c\rangle$, and the lemma is proved.

The next lemma studies the double loop \mathscr{F}_{Γ} of fixed elements if Γ is a finite (non-connected) elementary abelian group or a torus group of rank two.
1.2. Lemma. Let $\Gamma \cong \mathbb{Z}_{p}^{2}$ for some prime number p. Then \mathscr{F}_{Γ} is one- or two-dimensional. If $p=2$ and $\operatorname{dim} \mathscr{F}_{\Gamma}=2$, then $\operatorname{dim} \mathscr{F}_{\gamma}=4$ for every $\gamma \in \Gamma \backslash\{1\}$. If $\Gamma \cong \mathbb{T}^{2}$, then \mathscr{F}_{Γ} is two-dimensional.

Proof. Let $\Gamma \cong \mathbb{Z}_{p}^{2}$. Then the fix-double-loop \mathscr{F}_{Γ} is connected by [3, (3.3)]. If \mathscr{F}_{Γ} would be four-dimensional, all elements of Γ would fix $\mathscr{F}_{\Gamma}{ }_{\Gamma}$ pointwise which is impossible by [6, p. 262]. Thus \mathscr{F}_{Γ} is either one- or two-dimensional. Now let $p=2$ and $\operatorname{dim} \mathscr{F}_{\Gamma}=2$. Let a, b, and c denote the dimensions of the fix-double-loops of the three elements in $\Gamma \backslash\{1\}$. Then $a, b, c \in\{2,4\}$. By [3, (3.2)] we may apply [4, Chapt. XIII, $\S 3, \mathrm{Th} .2 .3]$ and obtain the relation $a+b+c=12$ which implies that $a=b=c=4$. Finally, let $\Gamma \cong \mathbb{T}^{2}$. Then Γ contains an elementary abelian subgroup of rank two and thus \mathscr{F}_{Γ} is one- or twodimensional. If $\operatorname{dim} \mathscr{F}_{\Gamma}=1$, using the notation from above, we obtain $a+b+c=10$. Hence, we may assume that $a=2$. Since Γ is a connected abelian group, it must fix the corresponding two-dimensional fix-double-loop pointwise, which is a contradiction. Hence we have $\operatorname{dim} \mathscr{F}_{\Gamma}=2$.
1.3. Lemma. If $\operatorname{dim} \mathscr{F}_{\Gamma}=0$, then there exists an element $c \in \mathscr{D} \backslash \mathscr{F}_{\Gamma}$ with $\operatorname{dim} c^{\Gamma} \leqslant 7$.

Proof. Suppose that $\operatorname{dim} c^{\Gamma}=8$ for every element $c \in \mathscr{D} \backslash \mathscr{F}_{\Gamma}$. Then Γ acts transitively on the complement $\mathscr{D} \backslash \mathscr{F}_{\Gamma}$ by [3, (3.4)], the double loop \mathscr{D} is a topological manifold homeomorphic to $\mathbb{R}^{8}([20,7.12]$ and $[14,5.2])$, and the group Γ is a Lie group by $[16,(6.3)]$. Moreover, the orbit c^{Γ} is homeomorphic to the homogeneous space Γ / Γ_{c} by [3, (3.1)]. Since the complement $\mathscr{D} \backslash \mathscr{F}_{\Gamma}$ is simply connected by [1], this implies that Γ / Γ_{c} is simply connected as well. Applying Alexander duality to $\hat{\mathscr{D}}$ and $\hat{\mathscr{F}}_{\Gamma}$, we obtain for $0 \leqslant k \leqslant 7$ the isomorphisms

$$
\tilde{\mathbf{H}}_{k}\left(\Gamma / \Gamma_{c}\right) \cong \tilde{\mathbf{H}}_{k}\left(c^{\Gamma}\right) \cong \tilde{\mathbf{H}}_{k}\left(\mathscr{D} \backslash \mathscr{F}_{\Gamma}\right) \cong \tilde{\mathbf{H}}_{k}\left(\hat{\mathscr{D}} \backslash \hat{\mathscr{\mathscr { F }}}_{\Gamma}\right) \cong \tilde{\mathbf{H}}^{7-k}\left(\hat{\mathscr{F}}_{\Gamma}\right) .
$$

Note that for formulating Alexander duality for non-manifolds $\hat{\mathscr{F}}_{\Gamma}$ we have to take Alexander-Spanier cohomology groups, see e.g. [15, Th. 6.6, p.222-223] or [7, VIII, 8.15]. Hence we have $\tilde{\mathbf{H}}_{k}\left(\Gamma / \Gamma_{c}\right)=0$ if $0 \leqslant k \leqslant 6$ and $\mathbf{H}_{7}\left(\Gamma / \Gamma_{c}\right)=\oplus^{k} \mathbb{Z}$, because $\hat{\hat{F}}_{\Gamma}$ is either finite or homeomorphic to the Cantor set, see [9, XI.1.5]. In any case, $\hat{\mathscr{F}}_{\Gamma}$ contains
at least three path components (namely the singletons 0,1 , and ∞), which implies that $\kappa \geqslant 2$. Since the quotient Γ / Γ_{c} is simply connected, we may apply the Hurewicz isomorphy theorem (see [24, §7, Sect. 5, Th. 4]) and obtain the relation $\pi_{7}\left(\Gamma / \Gamma_{c}\right) \cong \mathbf{H}_{7}\left(\Gamma / \Gamma_{c}\right)=\oplus^{\kappa} \mathbb{Z}$. Thus, we have the following part of the long homotopy sequence

$$
\pi_{7}(\Gamma) \xrightarrow{\alpha} \oplus^{\kappa} \mathbb{Z} \xrightarrow{\beta} \pi_{6}\left(\Gamma_{c}\right) .
$$

According to our general assumption that Γ is connected, the maximal compact subgroup K of Γ is a connected subgroup of $\operatorname{Spin}_{3} \mathbb{R}$, else Γ would contain an elementary abelian subgroup of rank two and hence \mathscr{F}_{Γ} would be connected by Lemma 1.2. In particular, the group K is either trivial or isomorphic to one of the groups $\mathbb{T} \approx \mathbb{S}_{1}$ or $\operatorname{Spin}_{3} \mathbb{R} \approx \mathbb{S}_{3}$. By the Malcev-Iwasawa theorem [12, Th. 13, p. 549], the groups Γ and K are homotopy equivalent. This implies that the homotopy group $\pi_{7}(\Gamma)$ is finite, see [24, Chapt. 9, Sect. 7, Th. 7]. Moreover, the stabilizer Γ_{c} is also connected, because the quotient space Γ / Γ_{c} is simply connected [17, Chapt. 2, §8, Cor. 1]. As before, this implies that Γ_{c} is homotopy equivalent to $\mathbb{S}_{1}, \mathbb{S}_{3}$, or to a one-point space. Hence, the group $\pi_{6}\left(\Gamma_{c}\right)$ is also finite, see again [24, Chapt. 9, Sect. 7, Th. 7]. Now, the exactness of the sequence above implies that the kernel of β is infinite, which contradicts the fact that the image of α is finite.

2. Upper Bounds for $\operatorname{dim} \Gamma$

2.1. Lemma. Let Φ and Ψ be non-trivial connected subgroups of Γ which centralize each other. Then, both groups are at most eightdimensional or one of them is at most four-dimensional.

Proof. If $\mathscr{F}_{\Phi} \neq \mathscr{F}_{\Psi}$, then $\operatorname{dim} \mathscr{F}_{\Phi}=\operatorname{dim} \mathscr{F}_{\Psi}=4$ by Lemma 3.3, and hence by [10], both groups Φ and Ψ are at most eight-dimensional. Thus in the sequel we may assume that $\mathscr{F}_{\Phi}=\mathscr{F}_{\Psi}=: \mathscr{F}$.

Case 1. For each $c \in \mathscr{D} \backslash \mathscr{F}$ we have $\left\langle c^{\Phi}\right\rangle \neq \mathscr{D} \neq\left\langle c^{\Psi}\right\rangle$. Then $\operatorname{dim}\left\langle c^{\Phi}\right\rangle=\operatorname{dim}\left\langle c^{\Psi}\right\rangle=4$ by [9, XI.8.5, XI.9.3] and, in particular, we have $\operatorname{dim} c^{\Phi} \leqslant 4$ and $\operatorname{dim} c^{\Psi} \leqslant 4$ for every $c \in \mathscr{D} \backslash \mathscr{F}$. Since the groups Φ and Ψ commute, the stabilizer Φ_{c} fixes the sub-double-loop $\left\langle c^{\Psi}\right\rangle$ pointwise and thus acts freely on the complement $\mathscr{D} \backslash\left\langle c^{\Psi}\right\rangle$. Hence we have $\operatorname{dim} \Phi_{c}=\operatorname{dim} d^{\Phi_{c}}+\operatorname{dim} \Phi_{c, d} \leqslant 4+0=4$ for some $d \in \mathscr{D} \backslash\left\langle c^{\Psi}\right\rangle$
and consequently $\operatorname{dim} \Phi \leqslant 8$ holds. Interchanging the roles of the groups Φ and Ψ this also gives $\operatorname{dim} \Psi \leqslant 8$.

Case 2. For all $c \in \mathscr{D} \backslash \mathscr{F}$ we have $\left\langle c^{\Phi}\right\rangle \neq \mathscr{D}$, and there is some $d \in \mathscr{D} \backslash \mathscr{F}$ with $\left\langle d^{\Psi}\right\rangle=\mathscr{D}$. Then the stabilizer Φ_{d} is trivial, since the groups Φ and Ψ commute. As in the first case we conclude that $\operatorname{dim} d^{\Phi} \leqslant 4$, and thus $\operatorname{dim} \Phi=\operatorname{dim} d^{\Phi} \leqslant 4$ holds.

Case 3. There exist elements $c, d \in \mathscr{D} \backslash \mathscr{F}$ such that $\left\langle c^{\oplus}\right\rangle=\mathscr{D}=$ $=\left\langle d^{\Psi}\right\rangle$. As in the second case we have $\Phi_{d}=1=\Psi_{c}$, which immediately. implies by [10] that $\operatorname{dim} \Phi=\operatorname{dim} d^{\Phi} \leqslant 8$ and $\operatorname{dim} \Psi=\operatorname{dim} c^{\Psi} \leqslant 8$.

We first study the case where Γ has a connected fix-double-loop.

2.2. Proposition. If $\operatorname{dim} \mathscr{F}_{\Gamma} \geqslant 1$, then $\operatorname{dim} \Gamma \leqslant 16$.

Proof. For $\operatorname{dim} \mathscr{F}_{\Gamma} \geqslant 2$ the assertion of the proposition is trivial by [10], since in this case the double loop \mathscr{D} is generated by \mathscr{F}_{Γ} and two additional elements of the complement $\mathscr{D} \backslash \mathscr{F}_{\Gamma}$. Thus let $\operatorname{dim} \mathscr{F}_{\Gamma}=1$. Since by [9, XI.8.5, XI.9.3] we have $\operatorname{dim}\left\langle c^{\Gamma}\right\rangle \geqslant 4$ for all $c \in \mathscr{D} \backslash \mathscr{F}_{\Gamma}$, we shall distinguish two cases. If $\operatorname{dim}\left\langle c^{\Gamma}\right\rangle=4$ for some $c \in \mathscr{D} \backslash \mathscr{F}_{\Gamma}$, then the group Γ acts on $\mathscr{H}:=\left\langle c^{\Gamma}\right\rangle$ and we obtain

$$
\operatorname{dim} \Gamma=\left.\operatorname{dim} \Gamma\right|_{\mathscr{H}}+\operatorname{dim} \Gamma_{[\mathscr{H}]} \leqslant 4+8=12
$$

by Lemma.(3.2) of the appendix and [3]. Turning to the second case we have $\left\langle c^{\Gamma}\right\rangle=\mathscr{D}$ for all $c \in \mathscr{D} \backslash \mathscr{F}_{\Gamma}$. If there is an element $c \in \mathscr{D} \backslash \mathscr{F}_{\Gamma}$ such that $\operatorname{dim}\langle c\rangle \geqslant 4$, then there exists another element $d \in \mathscr{D}$ with $\mathscr{D}=\langle c, d\rangle$. Thus the stabilizer $\Gamma_{c, d}$ is trivial and this implies that $\operatorname{dim} \Gamma=\operatorname{dim} c^{\Gamma}+\operatorname{dim} d^{\Gamma_{c}} \leqslant 8+8=16$. Hence, we may assume that $\operatorname{dim}\langle c\rangle=2$ for each $c \in \mathscr{D} \backslash \mathscr{F}_{\Gamma}$ and we conclude that $\operatorname{dim} c^{\Gamma} \leqslant 6$ holds for all $c \in \mathscr{D} \backslash \mathscr{F}_{\Gamma}$ by Lemma 1.1. Now, since \mathscr{F}_{Γ} is connected and since \mathscr{D} is generated by c^{Γ}, the double loop \mathscr{D} is generated by \mathscr{F}_{Γ} and at most three additional elements of the orbit c^{Γ}. This leads to the inequality $\operatorname{dim} \Gamma \leqslant 3 \operatorname{dim} c^{\Gamma} \leqslant 18$. Furthermore, we may assume that $\operatorname{dim} c^{\Gamma}=6$, since we have $\operatorname{dim} \Gamma \leqslant 3 \cdot 5=15$ if $\operatorname{dim} c^{\Gamma} \leqslant 5$. So, for the rest of the proof we may assume that $17 \leqslant \operatorname{dim} \Gamma \leqslant 18$.

Case 1. Γ is semi-simple. Since there is no quasi-simple group of dimension 17 or 18 , the inequality $17 \leqslant \operatorname{dim} \Gamma \leqslant 18$ implies that Γ is not quasi-simple. Let Z denote the center of Γ. By Lemma (3.3), either $\mathscr{F}_{\mathbf{Z}}=\mathscr{F}_{\zeta}$ for every $\zeta \in \mathbf{Z} \backslash\{1\}$ or there is some element $\zeta_{0} \in \mathbf{Z} \backslash\{1\}$ with $\operatorname{dim} \mathscr{F}_{5_{0}}=4$. Suppose that \mathbf{Z} has at least three elements. If $\mathscr{F}_{\mathrm{Z}}=\mathscr{F}_{\zeta}$
for all $\zeta \in \mathbf{Z} \backslash\{\mathbb{1}\}$, by [9, XI.9.1, XI.9.3] this implies that $\operatorname{dim}\left\langle c^{\mathbf{Z}}\right\rangle \geqslant 4$ for all $c \in \mathscr{D} \backslash \mathscr{F}_{Z}$, and hence $\operatorname{dim} \Gamma=\operatorname{dim} c^{\Gamma}+\operatorname{dim} \Gamma_{c} \leqslant 6+6=12$ holds. If, on the other hand, we have $\operatorname{dim} \mathscr{F}_{\zeta}=4$ for some $\zeta \in Z \backslash\{1\}$, then the group Γ leaves \mathscr{F}_{ζ} invariant, which implies that $\operatorname{dim} \Gamma=$ $=\operatorname{dim} \Gamma \mid \mathscr{F}_{\zeta}+\operatorname{dim} \Gamma\left[\mathscr{F}_{\zeta}\right] \leqslant 4+6=10$ by [3]. So let $|Z| \leqslant 2$. Then the group Γ is a Lie group which has a maximal torus subgroup of dimension at most two (toroidal rank at most two), see [9, XI.9.6]. Hence the group Γ has exactly two quasi-simple factors of toroidal rank one, because the universal covering of $\mathrm{SL}_{2} \mathbb{R}$ is excluded by $|Z| \leqslant 2$. But semi-simple Lie groups of toroidal rank one are at most eight-dimensional, and so $\operatorname{dim} \Gamma \leqslant 16$ follows.

Case 2. Γ is not semi-simple. Then the group Γ contains a minimal connected closed abelian normal subgroup $\Xi \neq \mathbb{1}$ which is either compact or isomorphic as a topological group to a vector group \mathbb{R}^{t}. Since Ξ is connected, every orbit $c^{\bar{\Sigma}}$ for $c \in \mathscr{D} \backslash \mathscr{F}_{\Xi}$ generates a sub-double-loop of dimension at least four, see [9, XI.8.5, XI.9.3]. If $\operatorname{dim}\left\langle c^{\Xi}\right\rangle=4$, the stabilizer Γ_{c} acts on $\left\langle c^{\Xi}\right\rangle$, and we obtain $\operatorname{dim} \Gamma_{c}=$ $=\operatorname{dim} \Gamma_{c} \mid\langle c \Sigma\rangle+\operatorname{dim} \Gamma_{[\langle c \bar{c}\rangle} \leqslant 4+6=10$ by [3] and Lemma (3.2). This implies that $\operatorname{dim} \Gamma \leqslant 10+6=16$.

So for the rest of the proof we may assume that $\left\langle c^{\Xi}\right\rangle=\mathscr{D}$. If Ξ is compact and hence central in Γ (see [11, (26.20)]), the stabilizer Γ_{c} is trivial and thus $\operatorname{dim} \Gamma \leqslant 6$ follows. Hence we may assume that Ξ is a vector group and that the stabilizer Γ_{c} acts effectively on Ξ. Let Γ_{c}^{1} denote the connected component of Γ_{c} containing the identity and let $\Pi \leqslant \Xi$ denote a minimal Γ_{c}^{1}-invariant subspace of Ξ. Applying Lemma 3.3 to Ξ and Π, we obtain that either \mathscr{F}_{Π} is four-dimensional and Γ_{c}^{1} acts on \mathscr{F}_{Π}, or $c^{\Pi} \neq c$. If $\operatorname{dim} \mathscr{F}_{\Pi}=4$, we conclude as before that $\operatorname{dim} \Gamma_{c} \leqslant 4+6=10$ and so $\operatorname{dim} \Gamma \leqslant 10+6=16$ holds. If $c^{\Pi} \neq c$, then we either have $\operatorname{dim}\left\langle c^{\Pi}\right\rangle=4$, which implies that $\operatorname{dim} \Gamma=\operatorname{dim} c^{\Gamma}+$ $+\operatorname{dim} \Gamma_{c} \leqslant 6+10=16$, or $\left\langle c^{\Pi}\right\rangle=\mathscr{D}$. So it remains to study the case $\left\langle c^{\Pi}\right\rangle=\mathscr{D}$. Then Γ_{c}^{1} acts effectively and irreducibly on the vector space Π, since Π is a minimal Γ_{c}^{1}-invariant subspace of Ξ. By [8, 19.14, 19.17], this implies that Γ_{c}^{1} is a linear Lie group whose radical Δ is a closed connected subgroup of \mathbb{C}^{\times}lying in the center of Γ_{c}^{1}. Let Ψ denote a Levi complement of Γ_{c}^{1}. By [9, XI.9.6] the dimension of the maximal torus of Γ_{c}^{1} is at most two. Consequently, if $\Delta \cong \mathbb{C}^{\times}$then the maximal torus of Ψ is at most one. Thus, by the classification of quasi-simple Lie groups we conclude that $\operatorname{dim} \Psi \leqslant 8$. Then $\operatorname{dim} \Gamma_{c}=$
$=\operatorname{dim} \Gamma_{c}^{1}=\operatorname{dim} \Psi+\operatorname{dim} \Delta \leqslant 8+2=10$ which yields $\operatorname{dim} \Gamma \leqslant 16$. Hence we may assume that $\operatorname{dim} \Delta \leqslant 1$.

Now, the set $\Pi^{*}:=\left\{\pi \in \Pi \mid c \in \mathscr{F}_{\pi}\right\}$ forms a subgroup of Π which is Γ_{c}^{1}-invariant, since for $\pi \in \Pi, c \in \mathscr{F}_{\pi}$, and $\gamma \in \Gamma$ we have $c^{\gamma} \in \mathscr{F}_{\pi^{\prime}}$ and thus $c^{\nu}=c$ implies that $\pi^{\nu} \in \Pi^{*}$. Hence the set Π^{*} is Γ_{c}^{1}-invariant. Because of $c^{\Pi} \neq c$, we moreover have $\Pi^{*} \neq \Pi$. But the group Π is a minimal Γ_{c}^{1}-invariant subgroup. We conclude that $\Pi^{*}=\mathbb{1}$ and hence $c^{\pi} \neq c$ for all $\pi \in \Pi \backslash\{0\}$. In particular, we have $\operatorname{dim}\left\langle c^{P}\right\rangle \geqslant 4$ for every oneparameter subgroup P of Π and $s:=\operatorname{dim} \Pi \leqslant 6$. Now, the stabilizer Γ_{c}^{1} either acts transitively on Π, or there is a one-parameter subgroup P of Π such that $\operatorname{dim} \Gamma_{c}^{1} / \Theta<s$, where Θ is the centralizer of P in Γ_{c}^{1}. In the first case, Γ_{c}^{1} acts transitively on the projective space $\mathscr{P}_{s-1} \mathbb{R}$ of all one-parameter subgroups of Π. If there is a one-parameter subgroup P with $\left\langle c^{\mathrm{P}}\right\rangle=\mathscr{D}$, then $\Theta=1$, because Θ fixes c. This leads to

$$
\operatorname{dim} \Gamma_{c}=\operatorname{dim} \Gamma_{c}^{1} / \Theta+\operatorname{dim} \Theta \leqslant s \leqslant 6
$$

and hence we have $\operatorname{dim} \Gamma=\operatorname{dim} \Gamma_{c}+\operatorname{dim} c^{\Gamma} \leqslant 6+6=12$. So we may assume that $\left\langle c^{P}\right\rangle<\mathscr{D}$ holds for all one-parameter subgroups P in Π. For the rest of the proof let us fix a one-parameter subgroup P in Π and let Θ be its centralizer in Γ_{c}^{1}. Since Θ acts freely on the complement $\mathscr{D} \backslash\left\langle c^{P}\right\rangle$, we have $\operatorname{dim} \Theta=\operatorname{dim} d^{\Theta}+\operatorname{dim} \Theta_{d} \leqslant \operatorname{dim} c^{\Gamma}+$ $+0 \leqslant 6$ for every $d \in c^{\mathbf{r}} \backslash\left\langle c^{\mathbf{P}}\right\rangle$. Such an element d exists, because we have assumed that $\operatorname{dim} c^{\Gamma}=6$. Altogether, we have

$$
\begin{equation*}
\operatorname{dim} \Gamma_{c}=\operatorname{dim} \Gamma_{c}^{1} / \Theta+\operatorname{dim} \Theta \leqslant s+6 . \tag{*}
\end{equation*}
$$

Thus, in the sequel we may suppose that $s \geqslant 5$. Since $\operatorname{dim} \Delta \leqslant 1$ and $11 \leqslant \operatorname{dim} \Gamma_{c} \leqslant 12$, the Levi-complement Ψ has one of the dimensions 10,11 , or 12 . We will study each of these cases separately by using the classification of quasi-simple Lie groups and their representations.
a) $\operatorname{dim} \Psi=10$. Then Ψ is quasi-simple and locally isomorphic to an orthogonal group $\mathrm{SO}_{5, r} \mathbb{R}$. Since groups locally isomorphic to $\mathrm{SO}_{5, r} \mathbb{R}$ have no irreducible representation of dimension 6 , we conclude that $s \leqslant 5$. The stabilizer Γ_{c} has dimension at most 11 , since $\operatorname{dim} \Delta \leqslant 1$. On the other hand, by what we have proved above we have $\operatorname{dim} \Gamma_{c} \geqslant 11$, and hence we know that $\operatorname{dim} \Gamma_{c}=11$. Choose an element $d \in c^{\Gamma} \cap\left\langle c^{\mathrm{P}}\right\rangle \backslash\langle c\rangle$. If $d^{\Gamma_{c}} \subseteq\left\langle c^{\mathrm{P}}\right\rangle$, then $\operatorname{dim} d^{\Gamma_{c}} \leqslant \operatorname{dim}\left\langle c^{\mathrm{P}}\right\rangle=4$ and we conclude that

$$
\operatorname{dim} \Gamma_{c}=\operatorname{dim} d^{\Gamma_{c}}+\operatorname{dim} \Gamma_{c, d} \leqslant 4+\operatorname{dim} \Gamma_{c, d} .
$$

For every element $e \in c^{\Gamma} \backslash\left\langle c^{\mathbf{P}}\right\rangle$ we have $\mathscr{D}=\langle c, d, e\rangle$ and thus we conclude that $\operatorname{dim} \Gamma_{c, d} \leqslant \operatorname{dim} e^{\Gamma_{c, d}} \leqslant \operatorname{dim} e^{\Gamma}=\operatorname{dim} c^{\Gamma}=6$. Consequently, we obtain $\operatorname{dim} \Gamma_{c} \leqslant 10$, which is a contradiction. Hence, we may assume that the orbit $d^{\Gamma_{c}}$ is not contained in $\left\langle c^{\mathrm{P}}\right\rangle$ and therefore we may select an element $e \in d^{\Gamma_{c}} \backslash\left\langle c^{\mathbf{P}}\right\rangle$. As before we have $\mathscr{D}=\langle c, d, e\rangle$. Thus, the stabilizer $\Gamma_{c, d, e}$ is trivial, which implies that

$$
11=\operatorname{dim} \Gamma_{c}=\operatorname{dim} d^{\Gamma_{c}}+\operatorname{dim} \Gamma_{c, d}=\operatorname{dim} d^{\Gamma_{c}}+\operatorname{dim} e^{\Gamma_{c, d}} .
$$

Since we have chosen the element d in the orbit c^{Γ}, we infer that $\operatorname{dim} d^{\Gamma_{c}} \leqslant \operatorname{dim} c^{\Gamma}=6$ and just so from $e \in d^{\Gamma_{c}}$ we get $\operatorname{dim} e^{\Gamma_{c, d}} \leqslant \operatorname{dim} d^{\Gamma_{c}}$. By the equation above, this implies that $\operatorname{dim} e^{\Gamma_{c, d}}=5\left(\right.$ and $\left.\operatorname{dim} d^{\Gamma_{c}}=6\right)$, and we infer that

$$
\operatorname{dim} \Theta=\operatorname{dim} e^{\Theta} \leqslant \operatorname{dim} e^{\Gamma_{c, d}}=5,
$$

because the centralizer Θ fixes $\left\langle c^{\mathbf{P}}\right\rangle=\langle c, d\rangle$ pointwise. By inequality (*), this yields $\operatorname{dim} \Gamma_{c} \leqslant s+5 \leqslant 10$, which again is a contradiction.
b) $\operatorname{dim} \Psi=11$. In this case, the group Ψ cannot be quasi-simple and, moreover, it is the product of an eight-dimensional quasi-simple group Ψ_{1} and a three-dimensional quasi-simple group Ψ_{2}. Since Ψ is a linear group, a maximal torus subgroup of Ψ has dimension at least two. By Lemma 1.2, every involution in Ψ has a four-dimensional double loop of fixed elements. Select an involution ω in Ψ which is centralized by the factor Ψ_{1}. Thus, Ψ_{1} leaves \mathscr{F}_{ω} invariant. Because Ψ_{1} is quasi-simple, it must either act trivially or with a zero-dimensional kernel on \mathscr{F}_{ω}. By Lemma 3.2 and [3], this implies that $\operatorname{dim} \Psi_{1} \leqslant$ $\leqslant \max \{4,6\}=6$, which is a contradiction.
c) $\operatorname{dim} \Psi=12$. Then $\Delta=1$ and $\Gamma_{c}^{1}=\Psi$ is the product of two sixdimensional quasi-simple groups Ψ_{1} and Ψ_{2}, for else Ψ would contain a three-dimensional torus subgroup (note that Ψ is linear), which is impossible by [9, XI.9.6]. Moreover, by inequality (*) we have $\operatorname{dim} \Theta=6=s$ and as mentioned above, Γ_{c}^{1} acts transitively on $\mathscr{P}_{s-1} \mathbb{R}$. Since Ψ is linear, we can apply the classification of transitive connected linear groups acting on Graßmann manifolds, see [25], e.g. By this classification, $\Gamma_{c}^{1}=\Psi$ has to be a quasi-simple group, which again is a contradiction.

We now turn to the general case where no restrictions on \mathscr{F}_{Γ} are presumed. We start with a result about semi-simple groups.
2.3. Proposition. If Γ is semi-simple, then $\operatorname{dim} \Gamma \leqslant 16$.

Proof. The quotient $\Gamma^{*}:=\Gamma / Z(\Gamma)$ is a semi-simple Lie group, $Z(\Gamma)$ is zero-dimensional, and a maximal compact Lie group K^{*} of Γ^{*} is covered by a Lie group \tilde{K} which is contained in the universal covering $\tilde{\Gamma}$ of Γ^{*}. In general, the group $\tilde{\mathrm{K}}$ need not be compact. So let \tilde{C} denote a maximal compact subgroup of $\tilde{\mathrm{K}}$.

Case 1. Γ is quasi-simple. Then \tilde{C} is a compact semi-simple Lie group, which is projected onto a compact semi-simple Lie subgroup C of Γ with $\operatorname{dim} C=\operatorname{dim} \tilde{C}$. Furthermore, the inequality $\operatorname{dim} C=$ $=\operatorname{dim} \tilde{C} \geqslant \operatorname{dim} \tilde{K}-1=\operatorname{dim} K^{*}-1$ holds. If $\operatorname{dim} \Gamma^{*} \geqslant 14$ then $\operatorname{dim} K^{*} \geqslant$ $\geqslant 6$ by the classification of quasi-simple Lie groups, and thus the group Γ contains a compact Lie group of dimension at least five. Consequently, the group Γ contains commuting involutions and the assertion follows from Lemma 1.2 and Proposition 2.2.

Case 2. Γ is semi-simple, but not quasi-simple. We write Γ as a product $\Gamma=\Phi \cdot \Psi \cdot \Delta$, where Φ and Ψ are non-trivial quasi-simple groups and Δ is a (possibly trivial) semi-simple group. By (2.1) we have $\operatorname{dim} \Gamma<\infty$, and thus we may assume that Φ is a quasi-simple factor of Γ of maximal dimension. The group Δ can be written as the product of at most two non-trivial semi-simple factors, because by Lemma 2.1 we have $\operatorname{dim} \Delta \leqslant 8$ (note that $\operatorname{dim} \Phi \cdot \Psi \geqslant 6>4$). Furthermore, we may assume that $\operatorname{dim} \Phi \geqslant 6$, since for $\operatorname{dim} \Phi \leqslant 3$ we would have $\operatorname{dim} \Gamma \leqslant$ $\leqslant 4 \cdot 3=12$. Now $\left\langle d^{\Phi}\right\rangle=\mathscr{D}$ must hold for all $d \in \mathscr{D} \backslash \mathscr{F}_{\Phi}$, because the quasi-simple group Φ acts on $\left\langle d^{\Phi}\right\rangle$ with a zero-dimensional kernel, i.e. the factor Φ induces a six-dimensional group on $\left\langle d^{\Phi}\right\rangle$, which is impossible by [3] and Lemma 3.2 if $\operatorname{dim}\left\langle d^{\Phi}\right\rangle=4$. So we have $\left\langle d^{\Phi}\right\rangle=$ $=\mathscr{D}$. Set $\Lambda:=\Psi \cdot \Delta$. Since Φ commutes with Λ and because of $\left\langle d^{\Phi}\right\rangle=\mathscr{D}$, the stabilizer Λ_{d} must be trivial. Consequently, we have $\operatorname{dim} \Lambda \leqslant 8$. Now assume that $\operatorname{dim} \Gamma \geqslant 17$. This implies that $\operatorname{dim} \Phi \geqslant 9$. Applying Lemma 2.1 to Φ and Λ, we conclude that $\operatorname{dim} \Lambda=3$ and hence $\operatorname{dim} \Phi \geqslant 14$. Finally, choose an element $d \in \mathscr{D} \backslash \mathscr{F}_{\Lambda}$. Then $\operatorname{dim}\left\langle d^{\Lambda}\right\rangle \geqslant 4$. If $\left\langle d^{\Lambda}\right\rangle=\mathscr{D}$, then $\operatorname{dim} \Phi \leqslant 8$ (and hence $\operatorname{dim} \Gamma \leqslant 11$), since Λ and Φ commute. Finally, if $\operatorname{dim}\left\langle d^{\Lambda}\right\rangle=4$, we obtain a contradiction as before.
2.4. Lemma. A commutative group Γ is at most eight-dimensional. If Γ is an eight-dimensional commutative group, then it is isomorphic to $\mathbb{R}^{6} \times \mathbb{T}^{2}$.

Proof. Let $c \in \mathscr{D} \backslash \mathscr{F}_{\Gamma}$. Then $\operatorname{dim}\left\langle c^{\Gamma}\right\rangle \geqslant 4$. If $\left\langle c^{\Gamma}\right\rangle=\mathscr{D}$, then the stabilizer Γ_{c} is trivial, because Γ is commutative. Thus we have $\operatorname{dim} \Gamma \leqslant 8$. Suppose that $\operatorname{dim} \Gamma=8$. Then the group Γ acts sharply transitively on the complement $\mathscr{D} \backslash \mathscr{\mathscr { F }}_{\Gamma}$. Hence the group Γ is a Lie group, and the double loop \mathscr{D} is a topological manifold (compare the proof of Lemma 1.3). Being a connected commutative Lie group, the group Γ is isomorphic to a product $\mathbb{R}^{l} \times \mathbb{T}^{8-l}$. Thus the homology groups $\mathbf{H}_{n}(\Gamma)$ of Γ vanish for $n \geqslant 2$. Applying Alexander duality to \mathscr{D} and $\hat{\mathscr{F}}_{\Gamma}$ and noting that $\Gamma / \Gamma_{c} \approx c^{\Gamma}=\mathscr{D} \backslash \mathscr{\mathscr { Y }}_{\Gamma}=\hat{\mathscr{D}} \backslash \hat{\mathscr{F}}_{\Gamma}$ holds by [3, (3.1)], this implies that the cohomology groups $\tilde{\mathbf{H}}^{n}\left(\hat{\mathscr{\mathscr { F }}}_{r}\right)$ vanish for $0 \leqslant n \leqslant 5$. In particular, the dimension of \mathscr{F}_{Γ} is at least six by Lemma 3.1. So we have $\mathscr{F}_{\mathrm{r}}=\mathscr{D}$, because the dimension of a finite-dimensional locally compact connected double loop is either $1,2,4$, or 8 , see $[9$, XI.8.5] and compare also [14]. But then we have $\Gamma=1$, a contradiction. Thus we have $\operatorname{dim} \Gamma \leqslant 7$ if $\left\langle c^{\Gamma}\right\rangle=\mathscr{D}$. Now let $\operatorname{dim}\left\langle c^{\Gamma}\right\rangle=4$ for every $c \in \mathscr{D} \backslash \mathscr{F}_{\Gamma}$. Fix some element $d \in \mathscr{D} \backslash \mathscr{F}_{\Gamma}$ and set $\mathscr{H}:=\left\langle d^{\Gamma}\right\rangle$. Choose an element $e \in \mathscr{D} \backslash \mathscr{H}$. Since $\operatorname{dim} \mathscr{H}=4$, the group $\Gamma_{d}=\Gamma_{[\mathscr{H}]}$ operates freely on $\mathscr{D} \backslash \mathscr{H}$. In particular, the stabilizer Γ_{d} acts effectively on the four-dimensional sub-double-loop $\left\langle e^{\Gamma}\right\rangle$. This implies that $\operatorname{dim} \Gamma=$ $=\operatorname{dim} d^{\Gamma}+\operatorname{dim} \Gamma_{d} \leqslant 4+4=8$, since the stabilizer Γ_{d} is at most fourdimensional by [3] and Lemma 3.2. Moreover, if $\operatorname{dim} \Gamma=8$, Lemma 2.4 of [3] yields $\Gamma_{d} \cong \mathbb{R}^{3} \times \mathbb{T}$. Interchanging the roles of the elements d and e, the same is true for the stabilizer Γ_{e}. Finally we have $\Gamma=\Gamma_{d} \times \Gamma_{e}$, since $\Gamma_{d} \cap \Gamma_{e}=1$ and $\operatorname{dim} \Gamma_{d}=\operatorname{dim} \Gamma_{e}=4$. This finishes our proof.

2.5. Proposition. If $\operatorname{dim} Z(\Gamma) \geqslant 1$, then $\operatorname{dim} \Gamma \leqslant 16$.

Proof. Let $Z:=Z(\Gamma)$ and choose an element $c \in \mathscr{D} \backslash \mathscr{F}_{z}$. Since $\operatorname{dim} Z \geqslant 1$, the sub-double-loop $\left\langle c^{\mathrm{Z}}\right\rangle$ is of dimension at least four (see [9, XI.9.1., XI.9.3]). If $\left\langle c^{2}\right\rangle=\mathscr{D}$, the stabilizer Γ_{c} is trivial, which implies that $\operatorname{dim} \Gamma=\operatorname{dim} c^{\Gamma} \leqslant \operatorname{dim} \mathscr{D}=8$. So we may assume that $\mathscr{H}:=\left\langle c^{2}\right\rangle$ is four-dimensional. Then the stabilizer Γ_{c} acts freely on the complement $\mathscr{D} \backslash \mathscr{H}$, since $\Gamma_{c}=\Gamma_{[\mathscr{H}]}$. Thus we have $\operatorname{dim} \Gamma_{c} \leqslant 8$ and the assertion $\operatorname{dim} \Gamma=\operatorname{dim} c^{\Gamma}+\operatorname{dim} \Gamma_{c} \leqslant 8+8=16$ follows.
2.6. Theorem. The automorphism group Γ of a locally compact connected eight-dimensional double loop \mathscr{D} is at most 16-dimensional.

Proof. By Proposition (2.3) we may assume that the group Γ contains a non-trivial connected commutative normal subgroup Ξ. If
Ξ is compact, it is contained in the center of Γ and the assertion of the theorem follows by Proposition 2.5. So, for the remainder of the proof we may assume that Ξ is not compact and hence is isomorphic to \mathbb{R}^{t} for some $t>0$. Moreover, by Proposition 2.2, we may assume that $\operatorname{dim} \mathscr{F}_{\Gamma}=0$. Hence, by Lemma 1.3 we may select an element $c \in \mathscr{D} \backslash \mathscr{F}_{\Gamma}$ with $\operatorname{dim} c^{\Gamma} \leqslant 7$. Choose a minimal Γ_{c}^{1}-invariant subspace $\Pi \leqslant \Xi$. Using the arguments of [21, (3.3)], we may assume that the stabilizer Γ_{c} is a Lie group, since otherwise the dimension of $\left\langle c^{\Gamma}\right\rangle$ would be four and then $\operatorname{dim} \Gamma \leqslant 12$ by [3], because the group Γ leaves $\left\langle c^{\Gamma}\right\rangle$ invariant. Next, we may assume that Ξ moves the element c, since in the other case the fix-double-loop \mathscr{F}_{g} is four-dimensional by Lemma 3.3, and as before we conclude that $\operatorname{dim} \Gamma \leqslant 12$, because Γ leaves \mathscr{F}_{E} invariant.

In the following step we shall show that it suffices to consider the case where $\left\langle c^{\Pi}\right\rangle \neq \mathscr{D}$. Assume that $\left\langle c^{\Pi}\right\rangle=\mathscr{D}$ holds. Then Γ_{c}^{1} acts effectively and irreducibly on the vector group Π. Consequently, the group Γ_{c}^{1} is a linear Lie group with a radical of dimension at most two, see $[8,19.14,19.17]$. Now the assumption $\operatorname{dim} \Gamma \geqslant 17$ implies that $\operatorname{dim} \Gamma_{c}^{1} \geqslant 10$, and therefore a Levi-complement Σ of Γ_{c}^{1} is at least eight-dimensional. Being a linear semi-simple Lie group, Σ thus contains commuting involutions. Hence, we have $\operatorname{dim} \Gamma \leqslant 16$ by Lemma 1.2 and Proposition 2.2. So we may assume that $\left\langle c^{\Pi}\right\rangle \neq \mathscr{D}$. For the rest of the proof we also suppose that $\operatorname{dim} \Gamma \geqslant 17$. We shall distinguish two cases.

Case 1. The element c is fixed by the vector group Π. Then the fix-double-loop \mathscr{F}_{Π} is four-dimensional by Lemma 3.3, since the element c is moved by the group Ξ. Set $\Pi^{*}:=\left(\Xi \cap \Gamma_{c}^{1}\right)^{1}$. Since Γ_{c}^{1} is closed in Γ and the group Π is contained in Π^{*} by assumption, we have $\Pi^{*} \cong \mathbb{R}^{s}$ for some $s>0$. Moreover, the fix-double-loop $\mathscr{F}_{\Pi^{*}}$ is four-dimensional by Lemma 3.3, since $\mathscr{F}_{\Pi^{*}} \neq \mathscr{F}_{玉}$. The group Π^{*} is a normal subgroup of Γ_{c}^{1}, because Ξ is normal in Γ. Thus the product $\Xi \Gamma_{c}^{1}$ leaves the Baer double loop $\mathscr{F}_{\boldsymbol{\Pi}^{*}}$ invariant and by Lemma 3.2 and [3] we obtain the inequality

$$
\operatorname{dim} \Xi \Gamma_{c}^{1}=\operatorname{dim} \Xi \Gamma_{c}^{1} \mid \mathscr{F}_{\Pi^{*}}+\operatorname{dim} d^{\Xi \Gamma_{c}^{1}} \leqslant 4+7=11
$$

for some element $d \in c^{\Gamma} \backslash \mathscr{F}_{\Pi^{*}}$. Using the (topological) isomorphism $\Xi \Gamma_{c}^{1} / \Xi \cong \Gamma_{c}^{1} / \Xi \cap \Gamma_{c}^{1}$ this yields the inequality

$$
\operatorname{dim} \Gamma_{c}^{1}=\operatorname{dim} \Xi \Gamma_{c}^{1}-\operatorname{dim} \Xi+\operatorname{dim}\left(\Xi \cap \Gamma_{c}^{1}\right) \leqslant 11-t+s .
$$

Since $\operatorname{dim} \Gamma \geqslant 17$ and $\operatorname{dim} c^{\Gamma} \leqslant 7$, we have $\operatorname{dim} \Gamma_{c}^{1} \geqslant 10$, and therefore $t-s \leqslant 1$ holds. If the orbit d^{Ξ} generates \mathscr{D} for some element $d \in c^{\Gamma}$, then the stabilizer Ξ_{d} is trivial and thus $\Xi_{c}=\Xi_{d^{b}}=\left(\Xi_{d}\right)^{\delta}=1$ for some automorphism $\delta \in \Gamma$ satisfying $d^{\delta}=c$. But this would contradict the fact that $1 \neq \Pi \leqslant \Xi_{c}$. Consequently, we have $\operatorname{dim}\left\langle d^{\Pi^{*}}\right\rangle=4$ for every $d \in c^{\Gamma} \backslash \mathscr{F}_{\Pi^{*}}$. Furthermore, the group Π^{*} acts effectively on $\left\langle d^{\Pi^{*}}\right\rangle$, because \mathscr{D} is generated by $\mathscr{F}_{\Pi^{*}}$ and the element d. Since Π^{*} is isomorphic to \mathbb{R}^{s}, this implies that $s \leqslant 3$ by [3, (2.4)]. Thus we have $t \leqslant 1+s \leqslant 4$. Let P denote a closed one-parameter subgroup of Π^{*}. Since $\operatorname{dim} \mathscr{F}_{\Pi^{*}}=4$, we have $\mathscr{F}_{\mathrm{P}}=\mathscr{F}_{\Pi^{*}}$ by Lemma (3.3). Therefore, the centralizer $\Theta:=C_{\Gamma} P$ leaves \mathscr{F}_{P} invariant, and as before we infer that $\operatorname{dim} \Theta \leqslant 11$. Finally, considering the action of Γ on the space of all one-dimensional subspaces of Ξ we obtain that

$$
\operatorname{dim} \Gamma \leqslant \operatorname{dim} \Theta+\operatorname{dim} \Xi \leqslant 11+4 \leqslant 15
$$

which contradicts our assumption $\operatorname{dim} \Gamma \geqslant 17$.
Case 2. The element c is moved by the vector group Π. Then the double loop $\mathscr{H}:=\left\langle c^{\Pi}\right\rangle$ is four-dimensional. Since Γ_{c}^{1} acts on Π and fixes the element c, it leaves \mathscr{H} invariant. This implies that

$$
\operatorname{dim} \Gamma_{c}^{1}=\left.\operatorname{dim}\left(\Gamma_{c}^{1}\right)\right|_{\mathscr{H}}+\operatorname{dim} d^{\Gamma_{c}^{1}} \leqslant 4+7=11
$$

for some $d \in c^{\Gamma} \backslash \mathscr{H}$. Let $N \leqslant \Gamma_{c}^{1}$ denote the kernel of the action of Γ_{c}^{1} on Π and set $\Lambda:=\Gamma_{[\mathscr{H}]}$. Then we have $N \leqslant \Lambda$. In the following we shall show that in fact $\mathrm{N}=\Lambda$. For this, we first verify that $c^{\pi} \neq c$ holds for all $\pi \in \Pi \backslash\{0\}$. By Lemma 3.3, either $c^{\pi} \neq c$ or $\mathscr{F}_{\pi}=\mathscr{H}$ holds for any $\pi \in \Pi \backslash\{1\}$. Consider the set $\Pi^{*}:=\left\{\pi \in \Pi \mid \mathscr{H} \leqslant \mathscr{F}_{\pi}\right\}$. Using the same arguments as in the proof of Proposition 2.2 we infer that $\Pi^{*}=1$ and hence $c^{\pi} \neq c$ holds for all $\pi \in \Pi \backslash\{1\}$. Now we are able to prove the inclusion $\Lambda \subseteq \mathbf{N}$. For this, choose an element $\lambda \in \Lambda$. Suppose that there is an element $\pi \in \Pi$ with $\lambda^{-1} \pi \lambda \neq \pi$. Then $1 \neq \vartheta:=\lambda^{-1} \pi \lambda \pi^{-1} \in \Pi$, and from the preceding arguments we infer that $c^{\vartheta} \neq c$. On the other hand, we have $c^{g}=c^{\lambda-1 \pi \lambda \pi^{-1}}=c^{\pi \lambda \pi^{-1}}$, and since $\lambda \in \Lambda$ and $c^{\pi} \in \mathscr{H}$, we conclude that $c \neq c^{\vartheta}=c^{\pi \lambda \pi^{-1}}=\left(c^{\pi}\right)^{\lambda \pi^{-1}}=\left(c^{\pi}\right)^{\pi^{-1}}=c$, which is a contradiction. This proves the equation $N=\Lambda$.

Now, the quotient group $\Gamma_{c}^{1} / N=\Gamma_{c}^{1} / \Lambda$ acts effectively and irreducibly on Π, since Π has been chosen to be minimal Γ_{c}^{1}-invariant. By $[8, \S 19.14, \S 19.17]$ this implies that there is a semi-simple linear Lie group Σ (possibly $\Sigma=1$) such that $\Sigma \leqslant \Gamma_{c}^{1} / N \leqslant \Sigma \mathbb{C}^{\times}$. Thus either
$\Gamma_{c}^{1} / N \leqslant \mathbb{R}$ or Γ_{c}^{1} / N contains a torus subgroup. In the second case, the involution ω which is contained in the torus subgroup induces an involution $\omega^{*}:=\left.\omega\right|_{\mathscr{H}}$ on \mathscr{H} (note that $\mathrm{N}=\Lambda$). By [3, (3.3)], we have $1 \leqslant \operatorname{dim} \mathscr{F}_{\omega^{*}} \leqslant 2$ and the desired inequality $\operatorname{dim} \Gamma \leqslant 16$ follows from Proposition (2.2). So it remains to study the case where $\Gamma_{c}^{1} / N \leqslant \mathbb{R}$. In this case, however, we immediately obtain that

$$
\operatorname{dim} \Gamma_{c} \leqslant \operatorname{dim} N+1=\operatorname{dim} \Lambda+1=\operatorname{dim} d^{\Lambda}+1 \leqslant 7+1=8
$$

for every element $d \in c^{\Gamma} \backslash \mathscr{H}$, and thus we have

$$
\operatorname{dim} \Gamma=\operatorname{dim} c^{\Gamma}+\operatorname{dim} \Gamma_{c} \leqslant 7+8=15,
$$

which finishes the proof.

3. Appendix

3.1. Lemma. Let \mathscr{D} be a locally compact connected double loop of arbitrary finite (covering) dimension n. Let U be a compact neighborhood in \mathscr{D}. Then the following statements hold:
(a) $\operatorname{dim} U=\operatorname{ind} U=\operatorname{Ind} U=\operatorname{dim}_{L} U=n$ for every principal ideal domain L, where dim_{L} denotes the cohomological dimension with coefficient domain L.
(b) The relation $\operatorname{dim}(U \times X)=\operatorname{dim}^{2} U+\operatorname{dim} X$ holds for every, locally compact paracompact space X.

Proof. The first assertion follows from Theorem 15.7 of [5] and from the fact that the covering dimension and the small and large inductive dimension coincide for a separable complete metric space, see [9, XI.1.2]. The second assertion follows from the equation $\operatorname{dim} U=\operatorname{dim}_{\mathbb{Z}_{p}} \mathscr{D}$ which holds for every prime number p by part (a), and from a theorem of Y. Kodama in [13, p. 400].
3.2. Lemma. Let \mathscr{D} be a locally compact connected double loop of arbitrary finite dimension n. Let \mathscr{H} be a closed sub-double-loop of \mathscr{D} which is invariant under a locally compact automorphism group Γ of \mathscr{D}. The kernel of the action of Γ on \mathscr{H} is denoted by Λ. Then the quotient group $\Delta=\Gamma / \Lambda$ of Γ is a topological transformation group on \mathscr{H} with respect to the quotient topology τ_{Q}, and $\operatorname{dim}\left(\Delta, \tau_{Q}\right)=\operatorname{dim}\left(\Delta, \tau_{c o}\right)$, where $\tau_{c o}$ denotes the compact-open topology on Δ with respect to the action of Δ on \mathscr{K}.

Proof. Let $\Phi: \mathscr{H} \times \Gamma \rightarrow \mathscr{H}$ be the evaluation mapping. Since \mathscr{H} is locally compact, the compact-open topology on Δ is the coarsest topology such that the mapping Φ is continuous. Thus the topology τ_{Q} on Δ is finer than the topology $\tau_{c o}$, since the group $\left(\Delta, \tau_{Q}\right)$ evidently is a topological transformation group on \mathscr{H}. But his means that the identity mapping id: $\left(\Delta, \tau_{c o}\right) \rightarrow\left(\Delta, \tau_{Q}\right)$ is continuous. Since Γ is locally compact by [2], we may select a compact neighborhood U of the identity $\mathbb{1}$ in $\left(\Delta, \tau_{c o}\right)$. The restriction id $\left.\right|_{U}:\left(U, \tau_{c o}\right) \rightarrow\left(U, \tau_{Q}\right)$ is a homeomorphism. Hence we conclude that

$$
\begin{aligned}
\operatorname{dim}\left(\Delta, \tau_{c o}\right) & =\operatorname{ind}\left(\Delta, \tau_{c o}\right)=\operatorname{ind}\left(U, \tau_{c o}\right)=\operatorname{ind}\left(U, \tau_{Q}\right)= \\
& =\operatorname{ind}\left(\Delta, \tau_{Q}\right)=\operatorname{dim}\left(\Delta, \tau_{Q}\right),
\end{aligned}
$$

and the lemma is proved.
3.3. Lemma. If $1 \neq \Phi \leq \Gamma$ is a connected normal subgroup, then $\mathscr{F}_{\Phi}=\mathscr{F}_{\Gamma}$ or \mathscr{F}_{Φ} is four-dimensional. If $1 \neq \gamma \in \Gamma$ and $\operatorname{dim} C \geqslant 1$, where $C:=\left(C_{\Gamma} \gamma\right)^{1}$, then $\mathscr{F}_{\gamma}=\mathscr{F}_{C}$ or \mathscr{F}_{γ} is four-dimensional.

Proof. Since Φ is a normal subgroup of Γ, the fix-double-loop \mathscr{F}_{Φ} is Γ-invariant. If $\mathscr{F}_{\Phi} \neq \mathscr{F}_{\Gamma}$, then Γ acts non-trivially on \mathscr{F}_{Φ}. Because the group Γ is connected, this implies that $\operatorname{dim} \mathscr{F}_{\Phi} \geqslant 4$ and thus \mathscr{F}_{Φ} is four-dimensional. Similarly, the connected group C acts on \mathscr{F}_{γ} and the claim follows as before.

References

[1] Bödi, R.: On the embedding of zero-dimensional double loops in locally euclidean double loops. Resultate der Math. 22, 657-666 (1992).
[2] BöD, R.: Automorphism groups of locally compact connected double loops are locally compact. Arch. Math. 63, 291-294 (1993).
[3] BödI, R.: On the dimensions of automorphism groups of 4-dimensional double loops. (to appear in Math. Z.).
[4] Borel, A.: Seminar on transformation groups. Ann. of Math. Stud. 46, Princeton: Univ. Press. 1960.
[5] Bredon, G. E.: Sheaf Theory. New York: McGraw-Hill. 1967.
[6] Cartan, H., Ellenberg, S.: Homological Algebra. Princeton: Univ. Press. 1956.
[7] Dold, A.: Lectures on Algebraic Topology. Berlin-Heidelberg-New York: Springer. 1972.
[8] Freudenthal, H., de Vries, H:: Linear Lie Groups. New York-London: Academic Press. 1969.
[9] Grundhöfer, T., Salzmann, H.: Locally compact double loops and ternary fields. In: Chein, O., Pflugfelder, H. D., Smith, J. D. H., (eds.) Quasigroups and Loops: Theory and Applications. pp. 313-356. Berlin: Heldermann. 1990.
[10] Halder, H. R.: Dimension der Bahn lokal kompakter Gruppen. Arch. Math. 22, 302-303 (1971).
[11] Hewirt, E., Ross, K. A.: Abstract Harmonic Analysis I, 2nd edn. Berlin-HeidelbergNew York: Springer. 1979.
[12] Iwasawa, K.: On some types of topological groups. Ann. of Math. 50, 507-558 (1949).
[13] Kodama, Y.: A necessary and sufficient condition under which $\operatorname{dim} X \times Y=\operatorname{dim} X+$ + dim Y. Proc. Japan Acad. 36, 400-404 (1960).
[14] Löwen, R.: Topology and dimension of stable planes: On a conjecture of H. Freudenthal. J. Reine Angew. Math. 343, 108-122 (1983).
[15] Massey, W. S.: Singular Homology Theory. Berlin-Heidelberg-New York: Springer. 1980.
[16] Montgomery, D., Zippin, L.: Topological Transformation Groups. New York: Wiley. 1955.
[17] Mostow, G. D.: The extensibility of local Lie groups of transformations. Ann. of Math. 52, 606-636 (1950).
[18] Nagami, K.: Dimension-theoretical structure of locally compact groups. J. Math. Soc. Japan 14, 379-396 (1962).
[19] Pears, A. R.: Dimension theory of general spaces. Cambridge: University Press. 19.75.
[20] Salzmann, H.: Topological planes. Adv. Math. 2, 1-60 (1967).
[21] Salzmann, H.: Automorphismengruppen achtdimensionaler Ternärkörper. Math. Z. 166, 265-275 (1979).
[22] Salzmann, H.: Compact 8-dimensional projective planes with large collineation groups. Geom. Dedicata 8, 139-161 (1979).
[23] Smith, P. A.: New results and old problems in finite transformation groups. Bull. Amer. Math. Soc. 66, 401-415 (1960).
[24] Spanier, E. H.: Algebraic Topology. New York: McGraw-Hill. 1966.
[25] Völklein, H.: Transitivitätsfragen bei linearen Liegruppen. Arch. Math. 36, 23-34 (1981).

Richard Bödi
Mathematisches Institut
Universität Tübingen
Auf der Morgenstelle 10
D-72076 Tübingen
Federal Republic of Germany
mmisa01@mailserv.zdv.uni-tuebingen.de

