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Abstract. Let 2 be an eight-dimensional, locally compact, connected double loop. It is
proved that the dimension of the automorphism group Aut & with respect to the compact-open
topology is at most 16.

Throughout this paper, let £ denote a locally compact, connected
double loop and let I be a closed subgroup of the full automorphism
group of 2, which is taken with the compact-open topology. By [14]
and [9, X1.8.5], the (covering) dimension of Z is 1, 2, 4, 8, or, possibly,
oo. Excepting the appendix and Lemma (1.1), the dimension of Z is
always assumed to be eight. By [2], the group I is a locally compact
transformation group of 2 and so the covering dimension coincides
with both inductive dimensions (see [18, Thm. 2.1]). The same is true
for the double loop 2 (see Lemma (3.1) of the appendix). In the case
where 2 is an eight-dimensional ternary field, H. SALZMANN has
shownin [21] that either the connected component of I' is isomorphic
to the compact exceptional simple Lie group G,, or dimI" < 14. This
result depends on a compactness criterion for the group I (see [21,
(2-2)]). For double loops such a criterion is not yet known.

For a subset M = 2, the smallest closed sub-double-loop of &
containing M is denoted by (M ». The double loop { M) is said to
be generated by M. If (M) # 2, then dim {M >€{0, 1, 2, 4} by the
above result. Note that no example of a locally compact, connected
double loop containing a 0-dimensional double loop is known. We
shall call &:= (1) the prime double loop of &. For any subgroup ®
of I', we denote by # the set of all those elements of 2 that are fixed
by every automorphism ¢ e®. Clearly, % is a closed sub-double-loop
of 2. If @ leaves a sub-double-loop # of & invariant, it induces on
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A an automorphism group ®|,, see also (3.2) of the appendix. We
shall write I' 4, for the (closed) subgroup of I that fixes # p01ntw1se
The one-point compactification 2 U {0} of 2 is denoted by F; it is
homotopy equivalent to Sg, see [14] and [9, X1.8.5]. All occurring
homology groups are assumed to be singular homology groups with
coefficient domain Z, whereas the cohomology groups are used in the
sense of Alexander—Spanier—Cech (see e.g. [24, Chap. 6, Sect. 4] or
[15, Chapt. IX, §6]). Reduced (co-)homology groups are written with
a tilde on top. When speaking about dimension in general, we always
mean the covering dimension dim. Unless stated otherwise, we may
assume by the sum theorem (see [19, §3, 2.5]) that the group I' is
connected, since we are only interested in the topological dimension
of I". The center of I is denoted by Z(I'). We use the symbol T for the
circle group.

1. The Dimensions of I'-Orbits

To obtain upper bounds for dimT, we first have to establish
non-trivial upper bounds for the dimensions of I'-orbits. The
following lemma generalizes a result of H. SALZMANN [22].

1.1. Lemma. Let dim @ > 2. For any element ce 9 which generates
a two-dimensional sub-double-loop of 2, the inequality
dimc" <dim2 —2
holds.

Proof. Let .= {c) be a two-dimensional sub-double-loop. We
may assume that c¢ % , else the inequality stated in the lemma holds
trivially. Then % :=%.n%¥ <% and therefore dim# =1 by [9,
X1.9.2]. Moreover, the sub-double-loop % is generated by any element
of the set ¥\.#. Consider the continuous map

N:E\F x T > D:(x,y)—>x"""

Because for any element xe 2 the preimage # (x) is a closed subset
of #\.F x T, the monotony theorem (see [19, §6, 6.2]) implies that

dim* (x) < dim (¥\F xTI).

Since dim {¢> =2 and dim (M Y€ {2, 4, 8} if ce M, we can find two
elements x, ye & such that @ = (¢, x, y). Thus, the stabilizer [, , is
trivial and we conclude that dimI'<3dim% < oo by repeated
application of the dimension formula [10]. Hence, we have dim(%\F x
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x I') < co. In particular, there is some element de 2 with dim#* (d) =
= dim 5:= sup,., dim " (x). Select arbitrary compact neighborhoods
Uc%\# and Q=Q ' T, and let #* be the restriction of # to
U x Q. Since U x Q is compact, the map n*:U x Q- U® is a closed
surjection, and thus we obtain from [19, §9, 2.6] the inequality

dim (U x Q) < dim U® + dim *.

Using the sum theorem [19,§3, 2.5] and Lemma (3.1) of the appendix,
this yields

dim% + dimI' =dim U 4+ dim Q = dim (U x Q) < dim & + dim *.
In particular, we have
dimI" — dim#* < dim 2 — 2.

Thus we have to prove the inequality dimn* < dim T, since dim T =
=dim T, + dimc" holds by [10]. Moreover, it is sufficient to verify
that

dim#n* (d) <dim T,

because we have dim #* < dim# = dimn* (d). Fix an element bed’ n
NE\F. Then the sub-double-loop ¥ is invariant under an auto-
morphism yel if and only if the element b? lies in €, since € is
generated by any element xe%\#. Because a connected two-
dimensional double loop has at most two continuous automorphisms
(see [9, X1.9.3]), the set € b thus contains at most two elements b
and b'. Select feI” with b® = b’ and choose an automorphism eI’
with b°"" = d. Setting

Ayi={(b.))e(b} x T|b=b"")
and
Ay={(b,yp)e{b} xT|b'=b>""}
we obtain
r]'_(d)=A1UA2

The sets A4; and A4, have identical dimensions, because they are
homeomorphic via the map (b, y)~>(b?,y#). Thus the sum theorem
yields that dim#n“(d)=dim A,. The set A, is homeomorphic to
{yel'|b=0°""} = {aed~'T'|b=b"} x T,. Finally, we have I, =T,
because € = (b) = {c), and the lemma is proved.
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The next lemma studies the double loop & - of fixed elements if
I' is a finite (non-connected) elementary abelian group or a torus
group of rank two.

1.2. Lemma. Let I' = Z2 for some prime number p. Then . is
one- or two-dimensional. If p =2 and dim # . = 2, thendim %, = 4 for
every yeI\{1}. If T = T2, then % . is two-dimensional.

Proof. LetT =~ Zi. Then the fix-double-loop % is connected by
[3, (3.3)]. If # would be four-dimensional, all elements of I' would
fix # - pointwise which is impossible by [6, p. 262]. Thus % . is either
one- or two-dimensional. Now let p = 2 and dim % = 2. Let a, b, and
¢ denote the dimensions of the fix-double-loops of the three elements
in I'\{1}. Then g, b, ce{2,4}. By [3, (3.2)] we may apply [4, Chapt.
X111, § 3, Th. 2.3] and obtain the relation a + b + ¢ = 12 which implies
that a = b = ¢ = 4. Finally, let I' = T2 Then I contains an elementary
abelian subgroup of rank two and thus % is one- or two-
dimensional. If dim &% = 1, using the notation from above, we obtain
a+b+c=10. Hence, we may assume that a=2. Since I' is a
connected abelian group, it must fix the corresponding two-dimen-
sional fix-double-loop pointwise, which is a contradiction. Hence we
have dim % =2.

1.3. Lemma. Ifdim & =0, then there exists an element ce 2\ F
with dim " < 7.

Proof. Suppose that dim ' = 8 for every element ce 2\ % . Then
I' acts transitively on the complement 2\ % - by [3, (3.4)], the double
loop 2 is a topological manifold homeomorphic to R® ([20, 7.12] and
[14, 5.2]), and the group I' is a Lie group by [16, (6.3)]. Moreover,
the orbit ¢' is homeomorphic to the homogeneous space I'/T", by [3,
(3.1)]. Since the complement %\ is simply connected by [1], this
implies that I'/T is simply connected as well. Applying Alexander
duality to & and %, we obtain for 0 < k < 7 the isomorphisms

ﬁk(r/rc) = Hk(c )= Hk(g\/ e Hk(@\J N H- k(~/ -

Note that for formulating Alexander duality for non-manifolds ¥ r
we have to take Alexander—Spanier cohomology groups, see e.g. [15,
Th. 6.6, p.222-223] or [7, VIII, 8.15]. Hence we have H(I'/T,)=0if
0<k<6andH,(I'/T)=@"Z, because F riseither finite or homeo-
morphic to the Cantor set, see [9, XI.1.5]. In any case, # 1. contains
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at least three path components (namely the singletons 0, 1, and o0),
which implies that « > 2. Since the quotient T'/T, is simply connected,
we may apply the Hurewicz isomorphy theorem (see [24, §7, Sect. 5,
Th. 4]) and obtain the relation #,(I'/T ) =~ H,(I'/T,) = *Z. Thus,
we have the following part of the long homotopy sequence

7(T) — Bz - ng(T).

According to our general assumption that I" is connected, the
maximal compact subgroup K of I' is a connected subgroup of
Spin; R, else I would contain an elementary abelian subgroup of rank
two and hence % - would be connected by Lemma 1.2. In particular,
the group Kis either trivial or isomorphic to one of the groups T ~ S,
or Spiny R~ S;. By the Malcev—Iwasawa theorem [12, Th. 13,
p. 549], the groups I' and K are homotopy equivalent. This implies
that the homotopy group n,(I') is finite, see [24, Chapt. 9, Sect. 7,
Th. 7]. Moreover, the stabilizer I', is also connected, because the
quotient space I'/T", is simply connected [17, Chapt. 2, §8, Cor. 1]. As
before, this implies that I', is homotopy equivalent to S, S5, or to a
one-point space. Hence, the group z4(I",) is also finite, see again [24,
Chapt. 9, Sect. 7, Th. 7]. Now, the exactness of the sequence above
implies that the kernel of f is infinite, which contradicts the fact that
the image of « is finite.

2. Upper Bounds for dim I

2.1. Lemma. Let ® and ¥ be non-trivial connected subgroups of I’
which centralize each other. Then, both groups are at most eight-
dimensional or one of them is at most four-dimensional.

Proof. If F 4 # Fy, then dim F, =dim Fy =4 by Lemma 3.3,
and hence by [10], both groups ® and ‘¥ are at most eight-dimensio-
nal. Thus in the sequel we may assume that 4, = #y = %.

Case 1. For each ce2\% we have (c®> # 2 #{c¥>. Then
dim (¢®) = dim {(c¥) =4 by [9, X1.8.5, X1.9.3] and, in particular, we
have dim ¢® < 4 and dim c* < 4 for every ce 2\ %. Since the groups
® and ¥ commute, the stabilizer ®, fixes the sub-double-loop (c¢*>
pointwise and thus acts freely on the complement 2\ {c¥ >. Hence we
have dim®,=dimd® +dim®, ,<4+0=4 for some deZ\{(c*)
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and consequently dim @ <8 holds. Interchanging the roles of the
groups @ and ¥ this also gives dim ¥ < 8.

Case 2. For all ce2\# we have {c®) # 2, and there is some
de9\F with (d¥) = 2. Then the stabilizer ®, is trivial, since the
groups ® and ¥ commute. As in the first case we conclude that
dim d® < 4, and thus dim ® = dim d® < 4 holds.

Case 3. There exist elements ¢, de2\F such that {¢®) =P =
= {d*). Asin the second case we have ®, = 1 = ¥,, which immediately
implies by [10] that dim ® = dimd® < 8 and dim¥ =dim c¥ < 8.

We first study the case where I" has a connected fix-double-loop.
2.2. Proposition. If dim %> 1, then dim " < 16.

Proof. For dim # > 2 the assertion of the proposition is trivial
by [10], since in this case the double loop 2 is generated by % and
two additional elements of the complement 2\ % .. Thus let dim #1. = 1.
Since by [9, X1.8.5, X1.9.3] we have dim {c") > 4 for all ce 2\ %, we
shall distinguish two cases. If dim {c") = 4 for some ce Z\Zr, then
the group I' acts on #:= {c") and we obtain

dimT =dimT |, +dim T, <448 =12

by Lemma (3.2) of the appendix and [3]. Turning to the second case
we have (¢") = 2 for all ce2\#;. If there is an element ce 2\ %
such that dim {c¢)> > 4, then there exists another element deZ with
9 = {c,d). Thus the stabilizer I', ; is trivial and this implies that
dimTI = dim¢" + dim d"* < 8 4+ 8 = 16. Hence, we may assume that
dim (¢) = 2 for each ce 2\ % and we conclude that dim ¢" < 6 holds
for all ce 2\ % by Lemma 1.1. Now, since % is connected and since
9 is generated by ¢T, the double loop 2 is generated by - and at
most three additional elements of the orbit c. This leads to the
inequality dim I < 3 dim ¢' < 18. Furthermore, we may assume that
dim ¢* = 6, since we have dimI' < 3-5= 15 if dimc" < 5. So, for the
rest of the proof we may assume that 17 <dimI" < 18.

Case 1. T is semi-simple. Since there is no quasi-simple group of
dimension 17 or 18, the inequality 17 < dim I < 18 implies that I is
not quasi-simple. Let Z denote the center of I'. By Lemma (3.3), either
Fg=F, for every (eZ\{1} or there is some element {,eZ\{1} with
dim %, = 4. Suppose that Z has at least three elements. If #, = #,
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for all {eZ\{1}, by [9, XL9.1, XL.9.3] this implies that dim {c*) >4
for all ce?\F,, and hence dimI =dimc" +dimI, <6 +6=12
holds. If, on the other hand, we have dim %, = 4 for some {eZ\{1},
then the group I' leaves %, invariant, which implies that dimI" =
=dimI'|#,+dimI'[#,] <4+ 6=10 by [3]. So let {Z] <2. Then
the group I' is a Lie group which has a maximal torus subgroup of
dimension at most two (toroidal rank at most two), see [9, X1.9.6].
Hence the group I' has exactly two quasi-simple factors of toroidal
rank one, because the universal covering of SL,R is excluded by
|Z| < 2. But semi-simple Lie groups of toroidal rank one are at most
eight-dimensional, and so dim I" < 16 follows.

Case 2. T isnot semi-simple. Then the group I" contains a minimal
connected closed abelian normal subgroup E #1 which is either
compact or isomorphic as a topological group to a vector group R’.
Since E is connected, every orbit ¢® for ce 2\ F5 generates a sub-
double-loop of dimension at least four, see [9, XI.8.5, XI1.9.3]. If
dim {c®) = 4, the stabilizer I, acts on {c®), and we obtain dimT, =
=dimT |z, +dim =<4+ 6 =10by[3] and Lemma (3.2). This
implies that dimI"' <10 + 6 = 16.

So for the rest of the proof we may assume that (¢=> = 2. If E is
compact and hence central in I" (see [11, (26.20)]), the stabilizer I', is
trivial and thus dim I' < 6 follows. Hence we may assume that = is a
vector group and that the stabilizer I', acts effectively on E. Let I'!
denote the connected component of I", containing the identity and let
II<E denote a minimal I''-invariant subspace of E. Applying
Lemma 3.3 to E and I1, we obtain that either #; is four-dimensional
and l"c1 acts on Fy;, or ¢ # ¢. If dim #; = 4, we conclude as before
that dimI', <4+ 6 =10 and so dimT" < 10 + 6 = 16 holds. If ¢ # ¢,
then we either have dim {c'"y =4, which implies that dimI' =dim c¢* +
+dimI', <6+ 10 = 16, or {c"y = 2. So it remains to study the case
{c™y = 9. Then T} acts effectively and irreducibly on the vector space
IT, since IT is a minimal I"}-invariant subspace of E. By [8, 19.14,
19.17], this implies that I'! is a linear Lie group whose radical A is a
closed connected subgroup of C* lying in the center of I'!. Let ¥
denote a Levi complement of I'!. By [9, X1.9.6] the dimension of the
maximal torus of I'} is at most two. Consequently, if A=~ C> then
the maximal torus of ¥ is at most one. Thus, by the classification of
quasi-simple Lie groups we conclude that dim ¥ < 8. Then dim I, =
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=dimI'! =dim¥ + dimA <8 +2=10 which yields dimI <16.
Hence we may assume that dim A < 1.

Now, the set IT*:= {nell|ce #,} forms a subgroup of IT which is
r c‘-invariant, since for nell, ce #,, and yeI” we have c’e#_,and thus
¢’ = c implies that n”eIT*. Hence the set IT* is I'!-invariant. Because
of ¢+ ¢, we moreover have IT* # I1. But the group IT is a minimal
I"!-invariant subgroup. We conclude that IT* = 1 and hence c” # ¢ for
all zelT\{1}. In particular, we have dim{cP> >4 for every one-
parameter subgroup P of IT and s:= dim IT < 6. Now, the stabilizer
I'! either acts transitively on I, or there is a one-parameter subgroup
P of IT such that dim I'} /@ < s, where @ is the centralizer of P in T'%.
In the first case, I'! acts transitively on the projective space Z,_, R of
all one-parameter subgroups of II. If there is a one-parameter
subgroup P with {cF) = 2, then ® =1, because O fixes c. This leads
to

dimI',=dimI}/© + dim® <s<6

and hence we have dimI'=dimTI,+dimc" <6+ 6=12. So we
may assume that {c”» < & holds for all one-parameter subgroups P
in I1. For the rest of the proof let us fix a one-parameter subgroup P
in IT and let © be its centralizer in I'}. Since ® acts freely on the
complement 2\{c», we have dim® = dim d® + dim ®, < dim ¢’ +
+ 0 <6 for every dec™\{c"). Such an element d exists, because we
have assumed that dim ¢! = 6. Altogether, we have

dimI',=dimI}!/® + dim® <s+6. (%)

Thus, in the sequel we may suppose that s > 5. Since dim A <1 and
11 <dim I, < 12, the Levi-complement ¥ has one of the dimensions
10, 11, or 12. We will study each of these cases separately by using
the classification of quasi-simple Lie groups and their representations.

a) dim ¥ = 10. Then ¥ is quasi-simple and locally isomorphic to
an orthogonal group SO;,R. Since groups locally isomorphic to
SO;,R have no irreducible representation of dimension 6, we
conclude that s < 5. The stabilizer I', has dimension at most 11, since
dim A < 1. On the other hand, by what we have proved above we have
dimI', > 11, and hence we know that dim I', = 11. Choose an element
dec™ n{c™H\(e). If d¥ = (P, then dim d"° < dim{cP) =4 and we
conclude that

dimI,=dimd"™ +dimI,,<4+dim[,,
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For every element ecc™\{c) we have 2 ={c,d,e) and thus we
conclude that dim I', ; < dim e ¢ < dime" = dim ¢" = 6. Consequent-
ly, we obtain dim I', < 10, which is a contradiction. Hence, we may
assume that the orbit d'* is not contained in {¢") and therefore we
may select an element eed™\ {cF). As before we have 2 = {c,d, e).
Thus, the stabilizer I', ; , is trivial, which implies that

11=dimT,=dimd™ + dimI,, = dimd" + dim ™.

Since we have chosen the element d in the orbit ¢, we infer that
dim d" < dim " = 6 and just so from ecd" we get dim e’ < dim d"~.
By the equation above, this implies that dim "¢ = 5 (and dim d™* = 6),
and we infer that

dim ® = dime® < dime'¢ =5,

because the centralizer © fixes (¢’ = (c,d) pointwise. By inequality
(), this yields dim I', < s + 5 < 10, which again is a contradiction.

b) dim ¥ = 11. In this case, the group ¥ cannot be quasi-simple
and, moreover, it is the product of an eight-dimensional quasi-simple
group ¥, and a three-dimensional quasi-simple group ¥,. Since ¥
is a linear group, a maximal torus subgroup of ¥ has dimension at
least two. By Lemma 1.2, every involution in ¥ has a four-dimensional
double loop of fixed elements. Select an involution @ in ¥ which is
centralized by the factor ¥,. Thus, ¥, leaves &, invariant. Because
¥, is quasi-simple, it must either act trivially or with a zero-dimensio-
nal kernel on % . By Lemma 3.2 and [3], this implies that dim ¥, <
< max{4,6} = 6, which is a contradiction.

¢)dim¥ =12. Then A=1and I'! =¥ is the product of two six-
dimensional quasi-simple groups ¥, and ¥, for else ¥ would contain
a three-dimensional torus subgroup (note that ¥ is linear), which is
impossible by [9, XI1.9.6]. Moreover, by inequality (*) we have
dim® =6=s and as mentioned above, I'! acts transitively on
2._,R. Since W is linear, we can apply the classification of transitive
connected linear groups acting on GraBmann manifolds, see [25], e.g.
By this classification, I'! =¥ has to be a quasi-simple group, which
again is a contradiction.

We now turn to the general case where no restrictions on 4. are
presumed. We start with a result about semi-simple groups.

2.3. Proposition. If I is semi-simple, then dimI' < 16.
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Proof. The quotient I'*:=I"/Z(I') is a semi-simple Lie group, Z(I')
is zero-dimensional, and a maximal compact Lie group K* of I'* is
covered by a Lie group K which is contained in the universal covering
I" of I'*. In general, the group K need not be compact. So let C denote
a maximal compact subgroup of K.

Case 1. T is quasi-simple. Then C is a compact semi-simple Lie
group, which is projected onto a compact semi-simple Lie subgroup
C of I' with dim C = dim C. Furthermore, the inequality dim C =
=dim C > dim K~ 1 =dim K* — 1 holds. If dim T'* > 14 then dim K* >
> 6 by the classification of quasi-simple Lie groups, and thus the
group I' contains a compact Lie group of dimension at least five.
Consequently, the group I contains commuting involutions and the
assertion follows from Lemma 1.2 and Proposition 2.2.

Case 2. T is semi-simple, but not quasi-simple. We write I" as a
product I'=®-¥-A, where ® and ¥ are non-trivial quasi-simple
groups and A is a (possibly trivial) semi-simple group. By (2.1) we have
dim I < o0, and thus we may assume that @ is a quasi-simple factor
of I of maximal dimension. The group A can be written as the product
of at most two non-trivial semi-simple factors, because by Lemma 2.1
we have dim A < 8 (note that dim ®-W¥ > 6 > 4). Furthermore, we may
assume that dim @ > 6, since for dim ® < 3 we would have dimT" <
<4-3=12. Now {d®) = 2 must hold for all de 2\ %, because the
quasi-simple group @ acts on {(d®) with a zero-dimensional kernel,
i.e. the factor @ induces a six-dimensional group on {d®», which is
impossible by [3] and Lemma 3.2 if dim {d®) = 4. So we have (d®) =
=92. Set A:="Y-A. Since ® commutes with A and because of
{d®y = 9, the stabilizer A, must be trivial. Consequently, we have
dim A < 8. Now assume that dimI" > 17. This implies that dim ® > 9.
Applying Lemma 2.1 to @ and A, we conclude that dim A =3 and
hence dim® > 14. Finally, choose an element de2\%,. Then
dim{d*) = 4. If (d*)> = 2, then dim ® < 8 (and hence dim I < 11),
since A and ® commute. Finally, if dim{d *) = 4, we obtain a contra-
diction as before.

2.4. Lemma. A commutative group I is at most eight-dimensional.
If T is an eight-dimensional commutative group, then it is isomorphic to
R® x T2
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Proof. Let ce@\&r. Then dim{c"y > 4. If {c") =2, then the
stabilizer I, is trivial, because I' is commutative. Thus we have
dimI < 8. Suppose that dimI" = 8. Then the group I acts sharply
transitively on the complement 2\ . Hence the group I' is a Lie
group, and the double loop 2 is a topological manifold (compare the
proof of Lemma 1.3). Being a connected commutative Lie group, the
group I' is isomorphic to a product R’ x T®~". Thus the homology
groups H,(I') of I vanish for n > 2. Applymg Alexander duality to 9
and Z and noting that I'/T, ~ cf = 2\ %, 9\9'} holds by [3,
(3.1)], this implies that the cohomology groups H"(% ) vanish for
0 < n < 5. In particular, the dimension of %7 is at least six by Lemma
3.1.So we have # = 9, because the dimension of a finite-dimensional
locally compact connected double loop is either 1, 2, 4, or 8, see [9,
X1.8.5} and compare also [ 14]. But then we have I" = 1, a contradiction.
Thus we have dim I' < 7 if {c'') = 2. Now let dim{c") = 4 for every
ce P\ Fr. Fix some element de 2\ F and set # := (d"). Choose an
element ee 2\ . Since dim s =4, the group I'y =17, operates
freely on 2\ . In particular, the stabilizer I'; acts effectively on the
four-dimensional sub-double-loop {e'). This implies that dim " =
=dimd" + dim T, < 4 + 4 = 8, since the stabilizer I', is at most four-
dimensional by [3] and Lemma 3.2. Moreover, if dim I' = §, Lemma
2.4 of [3] yields I'y =~ R*® x T. Interchanging the roles of the elements
d and e, the same is true for the stabilizer I',. Finally we have
I'=r;xI,sinceI';nI',=1and dimI';=dim I, =4. This finishes
our proof.

2.5. Proposition. Ifdim Z(I') > 1, then dim " < 16.

Proof. Let Z:=Z(I') and choose an element ce 2\, Since
dim Z > 1, the sub-double-loop {c?} is of dimension at least four (see
[9, X1.9.1., X1.9.3]). If (%) = 2, the stabilizer T, is trivial, which
implies that dimI' =dim " <dim2 =8. So we may assume that
H# .= {c?) is four-dimensional. Then the stabilizer I, acts freely on
the complement 2\, since I', = I'; . Thus we have dimI', < 8 and
the assertion dimI' = dim ¢' + dim T, < 8 + 8 = 16 follows.

2.6. Theorem. The automorphism group T of a locally compact
connected eight-dimensional double loop 9 is at most 16-dimensional.

Proof. By Proposition (2.3) we may assume that the group I
contains a non-trivial connected commutative normal subgroup E. If
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E is compact, it is contained in the center of I" and the assertion of
the theorem follows by Proposition 2.5. So, for the remainder of the
proof we may assume that = is not compact and hence is isomorphic
to R for some ¢t > 0. Moreover, by Proposition 2.2, we may assume
that dim % =0. Hence, by Lemma 1.3 we may select an element
ceP\Fr with dim ¢" <7. Choose a minimal I'!-invariant subspace
IT < E. Using the arguments of [21, (3.3)], we may assume that the
stabilizer T, is a Lie group, since otherwise the dimension of {c¢")
would be four and then dim I" < 12 by [3], because the group I leaves
{c") invariant. Next, we may assume that = moves the element c,
since in the other case the fix-double-loop % is four-dimensional by
Lemma 3.3, and as before we conclude that dimI" < 12, because I'
leaves &5 invariant.

In the following step we shall show that it suffices to consider the
case where (c'> # 2. Assume that {¢") =2 holds. Then I'! acts
effectively and irreducibly on the vector group I1. Consequently, the
group T'! is a linear Lie group with a radical of dimension at most
two, see 8, 19.14, 19.17]. Now the assumption dimI" > 17 implies
that dimI'! > 10, and therefore a Levi-complement X of I'! is at least
eight-dimensional. Being a linear semi-simple Lie group, X thus
contains commuting involutions. Hence, we have dimI'< 16 by
Lemma 1.2 and Proposition 2.2. So we may assume that {c"™) # 2.
For the rest of the proof we also suppose that dimI" > 17. We shall
distinguish two cases.

Case 1. The element c is fixed by the vector group I1. Then the
fix-double-loop % is four-dimensional by Lemma 3.3, since the
element ¢ is moved by the group E. Set IT*:=(ENT!)". Since I'! is
closed in I" and the group II is contained in IT* by assumption, we
have IT* = R® for some s > 0. Moreover, the fix-double-loop %+ is
four-dimensional by Lemma 3.3, since #» # 5. The group IT* is a
normal subgroup of I'}, because E is normal in I'. Thus the product
EI'} leaves the Baer double loop % invariant and by Lemma 3.2
and [3] we obtain the inequality

dimET! = dim &l [ F e + dimd = <4 4+ 7= 11

for some element dec"\ #p.. Using the (topological) isomorphism
BIr'l/ExT!/ENT] this yields the inequality

dimT! =dimEl'! —dimE+dimEnNT}) <11 —t +s.
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Since dimI" > 17 and dim ¢! <7, we have dim T c‘ > 10, and therefore
t —s <1 holds. If the orbit d= generates & for some element dec',
then the stabilizer 2, is trivial and thus E, = E; = (£,)’ = 1 for some
automorphism eI satisfying d° = c. But this would contradict the
fact that 1 # I1 < 5. Consequently, we have dim (d™) = 4 for every
dec™ Fp. Furthermore, the group IT* acts effectively on <(d™),
because 2 is generated by Zy+ and the element d. Since IT* is
isomorphic to R®, this implies that s <3 by [3, (2.4)]. Thus we have
t <1+ s5<4. Let P denote a closed one-parameter subgroup of IT*.
Since dim %= = 4, we have #p = % ;- by Lemma (3.3). Therefore, the
centralizer ®:= C.P leaves #; invariant, and as before we infer that
dim ® < 11. Finally, considering the action of I" on the space of all
one-dimensional subspaces of E we obtain that

dimI' <dim® +dimE<11+4<15

which contradicts our assumption dimI" > 17.

Case 2. The element ¢ is moved by the vector group IT. Then the
double loop #:= (¢} is four-dimensional. Since I'! acts on IT and
fixes the element c, it leaves # invariant. This implies that

dimI'! = dim(T"})| 4 + dimd™ <4+ 7=11

for some dec’\#. Let N <I"! denote the kernel of the action of I'!
on IT and set A:=1" 4, Then we have N < A. In the following we
shall show that in fact N = A. For this, we first verify that ¢* # ¢ holds
for all neIT\{1}. By Lemma 3.3, either ¢" # ¢ or &, = # holds for
any nelI\{1}. Consider the set IT*:= {nell|# < #,}. Using the
same arguments as in the proof of Proposition 2.2 we infer that IT* =1
and hence ¢” # ¢ holds for all 7eIT\{1}. Now we are able to prove
the inclusion A = N. For this, choose an element AeA. Suppose that
there is an element 7l with A~ 174 # 7. Then 1 # %= A" 'nin~lell,
and from the preceding arguments we infer that ¢’ # c. On the other
hand, we have ¢’ = ¢* '™ 7" = ¢ and since AeA and ¢"e #, we
conclude that ¢ # c® =™ " = (""" = (¢")" ' = ¢, which is a con-
tradiction. This proves the equation N = A.

Now, the quotient group I'!/N=T!/A acts effectively and
irreducibly on I1, since IT has been chosen to be minimal I'!-invariant.
By [8, §19.14, §19.17] this implies that there is a semi-simple linear
Lie group X (possibly £ = 1) such that £ <T"! /N < XC*. Thus either
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I'!/N <RorI'!/N contains a torus subgroup. In the second case, the
involution w which is contained in the torus subgroup induces an
involution w*:= w| 4 on # (note that N = A). By [3, (3.3)], we have
1 <dim Z . <2 and the desired inequality dim I' < 16 follows from
Proposition (2.2). So it remains to study the case where I'! /N < R. In
this case, however, we immediately obtain that

diml <dimN+1=dimA+1=dimd*+1<7+1=38
for every element dec™\ #, and thus we have
dimI=dimc' +dimI, <7+ 8 =15,
which finishes the proof.

3. Appendix

3.1. Lemma. Let & be a locally compact connected double loop of
arbitrary finite (covering ) dimension n. Let U be a compact neighbor-
hood in 9. Then the following statements hold:

(@) dim U =ind U = Ind U = dim; U = n for every principal ideal
domain L, where dim; denotes the cohomological dimension with
coefficient domain L.

(b) The relation dim(U x X)=dim U + dim X holds for every,
locally compact paracompact space X.

Proof. The first assertion follows from Theorem 15.7 of [5] and
from the fact that the covering dimension and the small and large
inductive dimension coincide for a separable complete metric space,
see [9, XI.1.2]. The second assertion follows from the equation
dim U = dim % which holds for every prime number p by part (a),
and from a theorem of Y. KopaAMA in [13, p.400].

3.2. Lemma. Let 9 be a locally compact connected double loop of
arbitrary finite dimension n. Let # be a closed sub-double-loop of 2
which is invariant under a locally compact automorphism group I of 9.
The kernel of the action of I on 5 is denoted by A. Then the quotient
group A =T/A of T is a topological transformation group on # with
respect to the quotient topology Ty, and dim(A, ty) = dim(A, 7.,), where
1,, denotes the compact-open topology on A with respect to the action
of Aon KA.
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Proof. Let ®:# x I — # be the evaluation mapping. Since 4 is
locally compact, the compact-open topology on A is the coarsest
topology such that the mapping @ is continuous. Thus the topology
1o on A s finer than the topology t.,, since the group (A, 7,) evidently
is a topological transformation group on /. But his means that the
identity mapping id:(A, 7,,) = (A, 1) is continuous. Since I' is locally
compact by [2], we may select a compact neighborhood U of the
identity 1 in (4, z,,). The restriction id| ;:(U, t,,) = (U, 7,) is a homeo-
morphism. Hence we conclude that

dim(A,r,,) = ind(A, 7,,) = ind(U, 7,,) = ind(U, 7p) =
=ind(A, tp) = dim(4, 7y),

and the lemma is proved.

3.3. Lemma. If 1 #® T is a connected normal subgroup, then
F o= Fror Fg is four-dimensional. If 1+# yel and dim C > 1, where
C:=(Cpy)', then F, = F or F, is four-dimensional.

Proof. Since @ is a normal subgroup of I', the fix-double-loop %,
is I'-invariant. If #4 # %, then I acts non-trivially on %4 Because
the group I' is connected, this implies that dim %4 > 4 and thus %
is four-dimensional. Similarly, the connected group C acts on %, and
the claim follows as before.
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