Mh. Math. 117, 1-16 (1994)

Monatshefte für Mathematik © Springer-Verlag 1994

Printed in Austria

On the Dimensions of Automorphism Groups of Eight-Dimensional Double Loops

By

Richard Bödi, Tübingen

(Received 16 February 1993)

Abstract. Let \mathscr{D} be an eight-dimensional, locally compact, connected double loop. It is proved that the dimension of the automorphism group Aut \mathscr{D} with respect to the compact-open topology is at most 16.

Throughout this paper, let \mathscr{D} denote a locally compact, connected double loop and let Γ be a closed subgroup of the full automorphism group of \mathscr{D} , which is taken with the compact-open topology. By [14] and [9, XI.8.5], the (covering) dimension of \mathscr{D} is 1, 2, 4, 8, or, possibly, ∞ . Excepting the appendix and Lemma (1.1), the dimension of \mathscr{D} is always assumed to be eight. By [2], the group Γ is a locally compact transformation group of \mathscr{D} and so the covering dimension coincides with both inductive dimensions (see [18, Thm. 2.1]). The same is true for the double loop \mathscr{D} (see Lemma (3.1) of the appendix). In the case where \mathscr{D} is an eight-dimensional ternary field, H. SALZMANN has shown in [21] that either the connected component of Γ is isomorphic to the compact exceptional simple Lie group G_2 , or dim $\Gamma < 14$. This result depends on a compactness criterion for the group Γ (see [21, (2.2])). For double loops such a criterion is not yet known.

For a subset $M \subseteq \mathcal{D}$, the smallest closed sub-double-loop of \mathcal{D} containing M is denoted by $\langle M \rangle$. The double loop $\langle M \rangle$ is said to be generated by M. If $\langle M \rangle \neq \mathcal{D}$, then dim $\langle M \rangle \in \{0, 1, 2, 4\}$ by the above result. Note that no example of a locally compact, connected double loop containing a 0-dimensional double loop is known. We shall call $\mathscr{E} := \langle 1 \rangle$ the prime double loop of \mathcal{D} . For any subgroup Φ of Γ , we denote by \mathscr{F}_{Φ} the set of all those elements of \mathcal{D} that are fixed by every automorphism $\varphi \in \Phi$. Clearly, \mathscr{F}_{Φ} is a closed sub-double-loop of \mathcal{D} . If Φ leaves a sub-double-loop \mathscr{H} of \mathcal{D} invariant, it induces on

 \mathscr{H} an automorphism group $\Phi|_{\mathscr{H}}$, see also (3.2) of the appendix. We shall write $\Gamma_{[\mathscr{H}]}$ for the (closed) subgroup of Γ that fixes \mathscr{H} pointwise. The one-point compactification $\mathscr{D} \cup \{\infty\}$ of \mathscr{D} is denoted by $\hat{\mathscr{D}}$; it is homotopy equivalent to \mathbb{S}_8 , see [14] and [9, XI.8.5]. All occurring homology groups are assumed to be singular homology groups with coefficient domain \mathbb{Z} , whereas the cohomology groups are used in the sense of Alexander–Spanier–Čech (see e.g. [24, Chap. 6, Sect. 4] or [15, Chapt. IX, §6]). Reduced (co-)homology groups are written with a tilde on top. When speaking about dimension in general, we always mean the covering dimension dim. Unless stated otherwise, we may assume by the sum theorem (see [19, §3, 2.5]) that the group Γ is connected, since we are only interested in the topological dimension of Γ . The center of Γ is denoted by $Z(\Gamma)$. We use the symbol \mathbb{T} for the circle group.

1. The Dimensions of Γ -Orbits

To obtain upper bounds for dim Γ , we first have to establish non-trivial upper bounds for the dimensions of Γ -orbits. The following lemma generalizes a result of H. SALZMANN [22].

1.1. Lemma. Let dim $\mathcal{D} \ge 2$. For any element $c \in \mathcal{D}$ which generates a two-dimensional sub-double-loop of \mathcal{D} , the inequality

$$\dim c^{\Gamma} \leq \dim \mathcal{D} - 2$$

holds.

Proof. Let $\mathscr{C}:=\langle c \rangle$ be a two-dimensional sub-double-loop. We may assume that $c \notin \mathscr{F}_{\Gamma}$, else the inequality stated in the lemma holds trivially. Then $\mathscr{F}:=\mathscr{F}_{\Gamma} \cap \mathscr{C} < \mathscr{C}$ and therefore dim $\mathscr{F}=1$ by [9, XI.9.2]. Moreover, the sub-double-loop \mathscr{C} is generated by any element of the set $\mathscr{C} \setminus \mathscr{F}$. Consider the continuous map

$$\eta: \mathscr{C} \setminus \mathscr{F} \times \Gamma \to \mathscr{D}: (x, \gamma) \mapsto x^{\gamma^{-1}}.$$

Because for any element $x \in \mathcal{D}$ the preimage $\eta^{\leftarrow}(x)$ is a closed subset of $\mathscr{C} \setminus \mathscr{F} \times \Gamma$, the monotony theorem (see [19, §6, 6.2]) implies that

$$\dim \eta^{\leftarrow}(x) \leq \dim (\mathscr{C} \setminus \mathscr{F} \times \Gamma).$$

Since dim $\langle c \rangle = 2$ and dim $\langle M \rangle \in \{2, 4, 8\}$ if $c \in M$, we can find two elements $x, y \in \mathcal{D}$ such that $\mathcal{D} = \langle c, x, y \rangle$. Thus, the stabilizer $\Gamma_{c,x,y}$ is trivial and we conclude that dim $\Gamma \leq 3 \dim \mathcal{D} < \infty$ by repeated application of the dimension formula [10]. Hence, we have dim($\mathscr{C} \setminus \mathscr{F} \times$

× Γ) < ∞ . In particular, there is some element $d \in \mathscr{D}$ with dim $\eta^{-}(d) = \dim \eta := \sup_{x \in \mathscr{D}} \dim \eta^{-}(x)$. Select arbitrary compact neighborhoods $U \subseteq \mathscr{C} \setminus \mathscr{F}$ and $\Omega = \Omega^{-1} \subseteq \Gamma$, and let η^{*} be the restriction of η to $U \times \Omega$. Since $U \times \Omega$ is compact, the map $\eta^{*}: U \times \Omega \to U^{\Omega}$ is a closed surjection, and thus we obtain from [19, §9, 2.6] the inequality

$$\dim (U \times \Omega) \leq \dim U^{\Omega} + \dim \eta^*.$$

Using the sum theorem $[19, \S3, 2.5]$ and Lemma (3.1) of the appendix, this yields

 $\dim \mathscr{C} + \dim \Gamma = \dim U + \dim \Omega = \dim (U \times \Omega) \leq \dim \mathscr{D} + \dim \eta^*.$

In particular, we have

$$\dim \Gamma - \dim \eta^* \leq \dim \mathcal{D} - 2.$$

Thus we have to prove the inequality $\dim \eta^* \leq \dim \Gamma_c$, since $\dim \Gamma = \dim \Gamma_c + \dim c^{\Gamma}$ holds by [10]. Moreover, it is sufficient to verify that

$$\dim \eta^{\leftarrow}(d) \leq \dim \Gamma_c,$$

because we have dim $\eta^* \leq \dim \eta = \dim \eta^-(d)$. Fix an element $b \in d^{\Gamma} \cap \cap \mathscr{C} \setminus \mathscr{F}$. Then the sub-double-loop \mathscr{C} is invariant under an automorphism $\gamma \in \Gamma$ if and only if the element b^{γ} lies in \mathscr{C} , since \mathscr{C} is generated by any element $x \in \mathscr{C} \setminus \mathscr{F}$. Because a connected two-dimensional double loop has at most two continuous automorphisms (see [9, XI.9.3]), the set $\mathscr{C} \cap b^{\Gamma}$ thus contains at most two elements b and b'. Select $\beta \in \Gamma$ with $b^{\beta} = b'$ and choose an automorphism $\delta \in \Gamma$ with $b^{\delta^{-1}} = d$. Setting

$$A_1 := \{(b, \gamma) \in \{b\} \times \Gamma | b = b^{\delta^{-1}\gamma}\}$$

and

$$A_2 := \{ (b', \gamma) \in \{b'\} \times \Gamma | b' = b^{\delta^{-1}\gamma} \}$$

we obtain

$$\eta^{\leftarrow}(d) = A_1 \cup A_2.$$

The sets A_1 and A_2 have identical dimensions, because they are homeomorphic via the map $(b, \gamma) \mapsto (b^{\beta}, \gamma^{\beta})$. Thus the sum theorem yields that dim $\eta^{\leftarrow}(d) = \dim A_1$. The set A_1 is homeomorphic to $\{\gamma \in \Gamma | b = b^{\delta^{-1}\gamma}\} = \{\alpha \in \delta^{-1}\Gamma | b = b^{\alpha}\} \approx \Gamma_b$. Finally, we have $\Gamma_b = \Gamma_c$, because $\mathscr{C} = \langle b \rangle = \langle c \rangle$, and the lemma is proved.

R. Bödi

The next lemma studies the double loop \mathscr{F}_{Γ} of fixed elements if Γ is a finite (non-connected) elementary abelian group or a torus group of rank two.

1.2. Lemma. Let $\Gamma \cong \mathbb{Z}_p^2$ for some prime number p. Then \mathscr{F}_{Γ} is one- or two-dimensional. If p = 2 and dim $\mathscr{F}_{\Gamma} = 2$, then dim $\mathscr{F}_{\gamma} = 4$ for every $\gamma \in \Gamma \setminus \{1\}$. If $\Gamma \cong \mathbb{T}^2$, then \mathscr{F}_{Γ} is two-dimensional.

Proof. Let $\Gamma \cong \mathbb{Z}_p^2$. Then the fix-double-loop \mathscr{F}_{Γ} is connected by [3, (3.3)]. If \mathscr{F}_{Γ} would be four-dimensional, all elements of Γ would fix \mathscr{F}_{Γ} pointwise which is impossible by [6, p. 262]. Thus \mathscr{F}_{Γ} is either one- or two-dimensional. Now let p = 2 and dim $\mathscr{F}_{\Gamma} = 2$. Let a, b, and c denote the dimensions of the fix-double-loops of the three elements in $\Gamma \setminus \{1\}$. Then $a, b, c \in \{2, 4\}$. By [3, (3.2)] we may apply [4, Chapt. XIII, §3, Th. 2.3] and obtain the relation a + b + c = 12 which implies that a = b = c = 4. Finally, let $\Gamma \cong \mathbb{T}^2$. Then Γ contains an elementary abelian subgroup of rank two and thus \mathscr{F}_{Γ} is one- or two-dimensional. If dim $\mathscr{F}_{\Gamma} = 1$, using the notation from above, we obtain a + b + c = 10. Hence, we may assume that a = 2. Since Γ is a connected abelian group, it must fix the corresponding two-dimensional fix-double-loop pointwise, which is a contradiction. Hence we have dim $\mathscr{F}_{\Gamma} = 2$.

1.3. Lemma. If dim $\mathscr{F}_{\Gamma} = 0$, then there exists an element $c \in \mathscr{D} \setminus \mathscr{F}_{\Gamma}$ with dim $c^{\Gamma} \leq 7$.

Proof. Suppose that dim $c^{\Gamma} = 8$ for every element $c \in \mathcal{D} \setminus \mathscr{F}_{\Gamma}$. Then Γ acts transitively on the complement $\mathcal{D} \setminus \mathscr{F}_{\Gamma}$ by [3, (3.4)], the double loop \mathcal{D} is a topological manifold homeomorphic to \mathbb{R}^8 ([20, 7.12] and [14, 5.2]), and the group Γ is a Lie group by [16, (6.3)]. Moreover, the orbit c^{Γ} is homeomorphic to the homogeneous space Γ/Γ_c by [3, (3.1)]. Since the complement $\mathcal{D} \setminus \mathscr{F}_{\Gamma}$ is simply connected by [1], this implies that Γ/Γ_c is simply connected as well. Applying Alexander duality to $\hat{\mathcal{D}}$ and $\hat{\mathscr{F}}_{\Gamma}$, we obtain for $0 \leq k \leq 7$ the isomorphisms

$$\widetilde{\mathbf{H}}_{k}(\Gamma/\Gamma_{c}) \cong \widetilde{\mathbf{H}}_{k}(c^{\Gamma}) \cong \widetilde{\mathbf{H}}_{k}(\mathscr{D} \setminus \mathscr{F}_{\Gamma}) \cong \widetilde{\mathbf{H}}_{k}(\widehat{\mathscr{D}} \setminus \widehat{\mathscr{F}}_{\Gamma}) \cong \widetilde{\mathbf{H}}^{7-k}(\widehat{\mathscr{F}}_{\Gamma}).$$

Note that for formulating Alexander duality for non-manifolds $\widehat{\mathscr{F}}_{\Gamma}$ we have to take Alexander–Spanier cohomology groups, see e.g. [15, Th. 6.6, p.222–223] or [7, VIII, 8.15]. Hence we have $\widetilde{\mathbf{H}}_{k}(\Gamma/\Gamma_{c}) = 0$ if $0 \leq k \leq 6$ and $\mathbf{H}_{7}(\Gamma/\Gamma_{c}) = \bigoplus^{\kappa} \mathbb{Z}$, because $\widehat{\mathscr{F}}_{\Gamma}$ is either finite or homeomorphic to the Cantor set, see [9, XI.1.5]. In any case, $\widehat{\mathscr{F}}_{\Gamma}$ contains

at least three path components (namely the singletons 0, 1, and ∞), which implies that $\kappa \ge 2$. Since the quotient Γ/Γ_c is simply connected, we may apply the Hurewicz isomorphy theorem (see [24, §7, Sect. 5, Th. 4]) and obtain the relation $\pi_7(\Gamma/\Gamma_c) \cong \mathbf{H}_7(\Gamma/\Gamma_c) = \bigoplus^{\kappa} \mathbb{Z}$. Thus, we have the following part of the long homotopy sequence

$$\pi_7(\Gamma) \xrightarrow{\alpha} \bigoplus^{\kappa} \mathbb{Z} \xrightarrow{\beta} \pi_6(\Gamma_c).$$

According to our general assumption that Γ is connected, the maximal compact subgroup K of Γ is a connected subgroup of Spin₃ \mathbb{R} , else Γ would contain an elementary abelian subgroup of rank two and hence \mathscr{F}_{Γ} would be connected by Lemma 1.2. In particular, the group K is either trivial or isomorphic to one of the groups $\mathbb{T} \approx \mathbb{S}_1$ or Spin₃ $\mathbb{R} \approx \mathbb{S}_3$. By the Malcev–Iwasawa theorem [12, Th. 13, p. 549], the groups Γ and K are homotopy equivalent. This implies that the homotopy group $\pi_7(\Gamma)$ is finite, see [24, Chapt. 9, Sect. 7, Th. 7]. Moreover, the stabilizer Γ_c is also connected, because the quotient space Γ/Γ_c is simply connected [17, Chapt. 2, §8, Cor. 1]. As before, this implies that Γ_c is homotopy equivalent to \mathbb{S}_1 , \mathbb{S}_3 , or to a one-point space. Hence, the group $\pi_6(\Gamma_c)$ is also finite, see again [24, Chapt. 9, Sect. 7, Th. 7]. Now, the exactness of the sequence above implies that the kernel of β is infinite, which contradicts the fact that the image of α is finite.

2. Upper Bounds for dim Γ

2.1. Lemma. Let Φ and Ψ be non-trivial connected subgroups of Γ which centralize each other. Then, both groups are at most eight-dimensional or one of them is at most four-dimensional.

Proof. If $\mathscr{F}_{\Phi} \neq \mathscr{F}_{\Psi}$, then dim $\mathscr{F}_{\Phi} = \dim \mathscr{F}_{\Psi} = 4$ by Lemma 3.3, and hence by [10], both groups Φ and Ψ are at most eight-dimensional. Thus in the sequel we may assume that $\mathscr{F}_{\Phi} = \mathscr{F}_{\Psi} = :\mathscr{F}$.

Case 1. For each $c \in \mathscr{D} \setminus \mathscr{F}$ we have $\langle c^{\Phi} \rangle \neq \mathscr{D} \neq \langle c^{\Psi} \rangle$. Then $\dim \langle c^{\Phi} \rangle = \dim \langle c^{\Psi} \rangle = 4$ by [9, XI.8.5, XI.9.3] and, in particular, we have $\dim c^{\Phi} \leq 4$ and $\dim c^{\Psi} \leq 4$ for every $c \in \mathscr{D} \setminus \mathscr{F}$. Since the groups Φ and Ψ commute, the stabilizer Φ_c fixes the sub-double-loop $\langle c^{\Psi} \rangle$ pointwise and thus acts freely on the complement $\mathscr{D} \setminus \langle c^{\Psi} \rangle$. Hence we have $\dim \Phi_c = \dim d^{\Phi_c} + \dim \Phi_{c,d} \leq 4 + 0 = 4$ for some $d \in \mathscr{D} \setminus \langle c^{\Psi} \rangle$

R. Bödi

and consequently dim $\Phi \leq 8$ holds. Interchanging the roles of the groups Φ and Ψ this also gives dim $\Psi \leq 8$.

Case 2. For all $c \in \mathcal{D} \setminus \mathcal{F}$ we have $\langle c^{\Phi} \rangle \neq \mathcal{D}$, and there is some $d \in \mathcal{D} \setminus \mathcal{F}$ with $\langle d^{\Psi} \rangle = \mathcal{D}$. Then the stabilizer Φ_d is trivial, since the groups Φ and Ψ commute. As in the first case we conclude that dim $d^{\Phi} \leq 4$, and thus dim $\Phi = \dim d^{\Phi} \leq 4$ holds.

Case 3. There exist elements $c, d \in \mathcal{D} \setminus \mathscr{F}$ such that $\langle c^{\Phi} \rangle = \mathcal{D} = \langle d^{\Psi} \rangle$. As in the second case we have $\Phi_d = \mathbb{1} = \Psi_c$, which immediately implies by [10] that dim $\Phi = \dim d^{\Phi} \leq 8$ and dim $\Psi = \dim c^{\Psi} \leq 8$.

We first study the case where Γ has a connected fix-double-loop.

2.2. Proposition. If dim $\mathscr{F}_{\Gamma} \ge 1$, then dim $\Gamma \le 16$.

Proof. For dim $\mathscr{F}_{\Gamma} \ge 2$ the assertion of the proposition is trivial by [10], since in this case the double loop \mathscr{D} is generated by \mathscr{F}_{Γ} and two additional elements of the complement $\mathscr{D} \backslash \mathscr{F}_{\Gamma}$. Thus let dim $\mathscr{F}_{\Gamma} = 1$. Since by [9, XI.8.5, XI.9.3] we have dim $\langle c^{\Gamma} \rangle \ge 4$ for all $c \in \mathscr{D} \backslash \mathscr{F}_{\Gamma}$, we shall distinguish two cases. If dim $\langle c^{\Gamma} \rangle = 4$ for some $c \in \mathscr{D} \backslash \mathscr{F}_{\Gamma}$, then the group Γ acts on $\mathscr{H} := \langle c^{\Gamma} \rangle$ and we obtain

$$\dim \Gamma = \dim \Gamma|_{\mathscr{H}} + \dim \Gamma_{[\mathscr{H}]} \leq 4 + 8 = 12$$

by Lemma (3.2) of the appendix and [3]. Turning to the second case we have $\langle c^{\Gamma} \rangle = \mathscr{D}$ for all $c \in \mathscr{D} \setminus \mathscr{F}_{\Gamma}$. If there is an element $c \in \mathscr{D} \setminus \mathscr{F}_{\Gamma}$ such that dim $\langle c \rangle \ge 4$, then there exists another element $d \in \mathscr{D}$ with $\mathscr{D} = \langle c, d \rangle$. Thus the stabilizer $\Gamma_{c,d}$ is trivial and this implies that dim $\Gamma = \dim c^{\Gamma} + \dim d^{\Gamma_c} \le 8 + 8 = 16$. Hence, we may assume that dim $\langle c \rangle = 2$ for each $c \in \mathscr{D} \setminus \mathscr{F}_{\Gamma}$ and we conclude that dim $c^{\Gamma} \le 6$ holds for all $c \in \mathscr{D} \setminus \mathscr{F}_{\Gamma}$ by Lemma 1.1. Now, since \mathscr{F}_{Γ} is connected and since \mathscr{D} is generated by c^{Γ} , the double loop \mathscr{D} is generated by \mathscr{F}_{Γ} and at most three additional elements of the orbit c^{Γ} . This leads to the inequality dim $\Gamma \le 3 \dim c^{\Gamma} \le 18$. Furthermore, we may assume that dim $c^{\Gamma} = 6$, since we have dim $\Gamma \le 3 \cdot 5 = 15$ if dim $c^{\Gamma} \le 5$. So, for the rest of the proof we may assume that $17 \le \dim \Gamma \le 18$.

Case 1. Γ is semi-simple. Since there is no quasi-simple group of dimension 17 or 18, the inequality $17 \leq \dim \Gamma \leq 18$ implies that Γ is not quasi-simple. Let Z denote the center of Γ . By Lemma (3.3), either $\mathscr{F}_{\mathsf{Z}} = \mathscr{F}_{\zeta}$ for every $\zeta \in \mathsf{Z} \setminus \{1\}$ or there is some element $\zeta_0 \in \mathsf{Z} \setminus \{1\}$ with $\dim \mathscr{F}_{\zeta_0} = 4$. Suppose that Z has at least three elements. If $\mathscr{F}_{\mathsf{Z}} = \mathscr{F}_{\zeta}$

for all $\zeta \in \mathbb{Z} \setminus \{1\}$, by [9, XI.9.1, XI.9.3] this implies that dim $\langle c^{\mathbb{Z}} \rangle \ge 4$ for all $c \in \mathscr{D} \setminus \mathscr{F}_{\mathbb{Z}}$, and hence dim $\Gamma = \dim c^{\Gamma} + \dim \Gamma_{c} \le 6 + 6 = 12$ holds. If, on the other hand, we have dim $\mathscr{F}_{\zeta} = 4$ for some $\zeta \in \mathbb{Z} \setminus \{1\}$, then the group Γ leaves \mathscr{F}_{ζ} invariant, which implies that dim $\Gamma =$ $= \dim \Gamma | \mathscr{F}_{\zeta} + \dim \Gamma [\mathscr{F}_{\zeta}] \le 4 + 6 = 10$ by [3]. So let $|\mathbb{Z}| \le 2$. Then the group Γ is a Lie group which has a maximal torus subgroup of dimension at most two (toroidal rank at most two), see [9, XI.9.6]. Hence the group Γ has exactly two quasi-simple factors of toroidal rank one, because the universal covering of $SL_2\mathbb{R}$ is excluded by $|\mathbb{Z}| \le 2$. But semi-simple Lie groups of toroidal rank one are at most eight-dimensional, and so dim $\Gamma \le 16$ follows.

Case 2. Γ is not semi-simple. Then the group Γ contains a minimal connected closed abelian normal subgroup $\Xi \neq 1$ which is either compact or isomorphic as a topological group to a vector group \mathbb{R}^t . Since Ξ is connected, every orbit c^{Ξ} for $c \in \mathscr{D} \setminus \mathscr{F}_{\Xi}$ generates a subdouble-loop of dimension at least four, see [9, XI.8.5, XI.9.3]. If dim $\langle c^{\Xi} \rangle = 4$, the stabilizer Γ_c acts on $\langle c^{\Xi} \rangle$, and we obtain dim $\Gamma_c =$ $= \dim \Gamma_c |_{\langle c^{\Xi} \rangle} + \dim \Gamma_{[\langle c^{\Xi} \rangle]} \leq 4 + 6 = 10$ by [3] and Lemma (3.2). This implies that dim $\Gamma \leq 10 + 6 = 16$.

So for the rest of the proof we may assume that $\langle c^{\Xi} \rangle = \mathcal{D}$. If Ξ is compact and hence central in Γ (see [11, (26.20)]), the stabilizer Γ_c is trivial and thus dim $\Gamma \leq 6$ follows. Hence we may assume that Ξ is a vector group and that the stabilizer Γ_c acts effectively on Ξ . Let Γ_c^1 denote the connected component of Γ_c containing the identity and let $\Pi \leq \Xi$ denote a minimal Γ_c^1 -invariant subspace of Ξ . Applying Lemma 3.3 to Ξ and Π , we obtain that either \mathscr{F}_{Π} is four-dimensional and Γ_c^1 acts on \mathscr{F}_{Π} , or $c^{\Pi} \neq c$. If dim $\mathscr{F}_{\Pi} = 4$, we conclude as before that dim $\Gamma_c \leq 4 + 6 = 10$ and so dim $\Gamma \leq 10 + 6 = 16$ holds. If $c^{\Pi} \neq c$, then we either have dim $\langle c^{\Pi} \rangle = 4$, which implies that dim $\Gamma = \dim c^{\Gamma} +$ + dim $\Gamma_c \leq 6 + 10 = 16$, or $\langle c^{\Pi} \rangle = \mathcal{D}$. So it remains to study the case $\langle c^{\Pi} \rangle = \mathcal{D}$. Then Γ_c^1 acts effectively and irreducibly on the vector space Π, since Π is a minimal Γ_c^1 -invariant subspace of Ξ. By [8, 19.14, 19.17], this implies that Γ_c^1 is a linear Lie group whose radical Δ is a closed connected subgroup of \mathbb{C}^{\times} lying in the center of Γ_{c}^{1} . Let Ψ denote a Levi complement of Γ_c^1 . By [9, XI.9.6] the dimension of the maximal torus of Γ_c^1 is at most two. Consequently, if $\Delta \cong \mathbb{C}^{\times}$ then the maximal torus of Ψ is at most one. Thus, by the classification of quasi-simple Lie groups we conclude that dim $\Psi \leq 8$. Then dim $\Gamma_c =$

 $= \dim \Gamma_c^1 = \dim \Psi + \dim \Delta \leq 8 + 2 = 10 \text{ which yields } \dim \Gamma \leq 16.$ Hence we may assume that $\dim \Delta \leq 1$.

Now, the set $\Pi^* := \{\pi \in \Pi | c \in \mathscr{F}_{\pi}\}$ forms a subgroup of Π which is Γ_c^1 -invariant, since for $\pi \in \Pi$, $c \in \mathscr{F}_{\pi}$, and $\gamma \in \Gamma$ we have $c^{\gamma} \in \mathscr{F}_{\pi^{\gamma}}$ and thus $c^{\gamma} = c$ implies that $\pi^{\gamma} \in \Pi^*$. Hence the set Π^* is Γ_c^1 -invariant. Because of $c^{\Pi} \neq c$, we moreover have $\Pi^* \neq \Pi$. But the group Π is a minimal Γ_c^1 -invariant subgroup. We conclude that $\Pi^* = 1$ and hence $c^{\pi} \neq c$ for all $\pi \in \Pi \setminus \{1\}$. In particular, we have dim $\langle c^P \rangle \ge 4$ for every one-parameter subgroup P of Π and $s := \dim \Pi \le 6$. Now, the stabilizer Γ_c^1 either acts transitively on Π , or there is a one-parameter subgroup P of Π such that dim $\Gamma_c^1/\Theta < s$, where Θ is the centralizer of P in Γ_c^1 . In the first case, Γ_c^1 acts transitively on the projective space $\mathscr{P}_{s-1} \mathbb{R}$ of all one-parameter subgroups of Π . If there is a one-parameter subgroup P with $\langle c^P \rangle = \mathscr{D}$, then $\Theta = 1$, because Θ fixes c. This leads to

 $\dim \Gamma_c = \dim \Gamma_c^1 / \Theta + \dim \Theta \leq s \leq 6$

and hence we have $\dim \Gamma = \dim \Gamma_c + \dim c^{\Gamma} \le 6 + 6 = 12$. So we may assume that $\langle c^{\mathsf{P}} \rangle < \mathscr{D}$ holds for all one-parameter subgroups P in Π . For the rest of the proof let us fix a one-parameter subgroup P in Π and let Θ be its centralizer in Γ_c^1 . Since Θ acts freely on the complement $\mathscr{D} \setminus \langle c^{\mathsf{P}} \rangle$, we have $\dim \Theta = \dim d^{\Theta} + \dim \Theta_d \le \dim c^{\Gamma} + 0 \le 6$ for every $d \in c^{\Gamma} \setminus \langle c^{\mathsf{P}} \rangle$. Such an element d exists, because we have assumed that $\dim c^{\Gamma} = 6$. Altogether, we have

$$\dim \Gamma_c = \dim \Gamma_c^1 / \Theta + \dim \Theta \leqslant s + 6. \tag{(*)}$$

Thus, in the sequel we may suppose that $s \ge 5$. Since dim $\Delta \le 1$ and $11 \le \dim \Gamma_c \le 12$, the Levi-complement Ψ has one of the dimensions 10, 11, or 12. We will study each of these cases separately by using the classification of quasi-simple Lie groups and their representations.

a) dim $\Psi = 10$. Then Ψ is quasi-simple and locally isomorphic to an orthogonal group SO₅, \mathbb{R} . Since groups locally isomorphic to SO₅, \mathbb{R} have no irreducible representation of dimension 6, we conclude that $s \leq 5$. The stabilizer Γ_c has dimension at most 11, since dim $\Delta \leq 1$. On the other hand, by what we have proved above we have dim $\Gamma_c \geq 11$, and hence we know that dim $\Gamma_c = 11$. Choose an element $d \in c^{\Gamma} \cap \langle c^{\mathsf{P}} \rangle \setminus \langle c \rangle$. If $d^{\Gamma_c} \subseteq \langle c^{\mathsf{P}} \rangle$, then dim $d^{\Gamma_c} \leq \dim \langle c^{\mathsf{P}} \rangle = 4$ and we conclude that

$$\dim \Gamma_c = \dim d^{\Gamma_c} + \dim \Gamma_{c,d} \leq 4 + \dim \Gamma_{c,d}.$$

For every element $e \in c^{\Gamma} \setminus \langle c^{\mathsf{P}} \rangle$ we have $\mathscr{D} = \langle c, d, e \rangle$ and thus we conclude that $\dim \Gamma_{c,d} \leq \dim e^{\Gamma_{c,d}} \leq \dim e^{\Gamma} = \dim c^{\Gamma} = 6$. Consequently, we obtain $\dim \Gamma_c \leq 10$, which is a contradiction. Hence, we may assume that the orbit d^{Γ_c} is not contained in $\langle c^{\mathsf{P}} \rangle$ and therefore we may select an element $e \in d^{\Gamma_c} \setminus \langle c^{\mathsf{P}} \rangle$. As before we have $\mathscr{D} = \langle c, d, e \rangle$. Thus, the stabilizer $\Gamma_{c,d,e}$ is trivial, which implies that

$$11 = \dim \Gamma_c = \dim d^{\Gamma_c} + \dim \Gamma_{c,d} = \dim d^{\Gamma_c} + \dim e^{\Gamma_{c,d}}.$$

Since we have chosen the element d in the orbit c^{Γ} , we infer that $\dim d^{\Gamma_c} \leq \dim c^{\Gamma} = 6$ and just so from $e \in d^{\Gamma_c}$ we get $\dim e^{\Gamma_{c,d}} \leq \dim d^{\Gamma_c}$. By the equation above, this implies that $\dim e^{\Gamma_{c,d}} = 5$ (and $\dim d^{\Gamma_c} = 6$), and we infer that

$$\dim \Theta = \dim e^{\Theta} \leqslant \dim e^{\Gamma_{c,d}} = 5,$$

because the centralizer Θ fixes $\langle c^{\mathsf{P}} \rangle = \langle c, d \rangle$ pointwise. By inequality (*), this yields dim $\Gamma_c \leq s + 5 \leq 10$, which again is a contradiction.

b) dim $\Psi = 11$. In this case, the group Ψ cannot be quasi-simple and, moreover, it is the product of an eight-dimensional quasi-simple group Ψ_1 and a three-dimensional quasi-simple group Ψ_2 . Since Ψ is a linear group, a maximal torus subgroup of Ψ has dimension at least two. By Lemma 1.2, every involution in Ψ has a four-dimensional double loop of fixed elements. Select an involution ω in Ψ which is centralized by the factor Ψ_1 . Thus, Ψ_1 leaves \mathscr{F}_{ω} invariant. Because Ψ_1 is quasi-simple, it must either act trivially or with a zero-dimensional kernel on \mathscr{F}_{ω} . By Lemma 3.2 and [3], this implies that dim $\Psi_1 \leq \leq \max{4, 6} = 6$, which is a contradiction.

c) dim $\Psi = 12$. Then $\Delta = 1$ and $\Gamma_c^1 = \Psi$ is the product of two sixdimensional quasi-simple groups Ψ_1 and Ψ_2 , for else Ψ would contain a three-dimensional torus subgroup (note that Ψ is linear), which is impossible by [9, XI.9.6]. Moreover, by inequality (*) we have dim $\Theta = 6 = s$ and as mentioned above, Γ_c^1 acts transitively on $\mathscr{P}_{s-1}\mathbb{R}$. Since Ψ is linear, we can apply the classification of transitive connected linear groups acting on Graßmann manifolds, see [25], e.g. By this classification, $\Gamma_c^1 = \Psi$ has to be a quasi-simple group, which again is a contradiction.

We now turn to the general case where no restrictions on \mathscr{F}_{Γ} are presumed. We start with a result about semi-simple groups.

2.3. Proposition. If Γ is semi-simple, then dim $\Gamma \leq 16$.

R. Bödi

Proof. The quotient $\Gamma^* := \Gamma/Z(\Gamma)$ is a semi-simple Lie group, $Z(\Gamma)$ is zero-dimensional, and a maximal compact Lie group K* of Γ^* is covered by a Lie group \tilde{K} which is contained in the universal covering $\tilde{\Gamma}$ of Γ^* . In general, the group \tilde{K} need not be compact. So let \tilde{C} denote a maximal compact subgroup of \tilde{K} .

Case 1. Γ is quasi-simple. Then \tilde{C} is a compact semi-simple Lie group, which is projected onto a compact semi-simple Lie subgroup C of Γ with dim $C = \dim \tilde{C}$. Furthermore, the inequality dim C = $= \dim \tilde{C} \ge \dim \tilde{K} - 1 = \dim K^* - 1$ holds. If dim $\Gamma^* \ge 14$ then dim $K^* \ge$ ≥ 6 by the classification of quasi-simple Lie groups, and thus the group Γ contains a compact Lie group of dimension at least five. Consequently, the group Γ contains commuting involutions and the assertion follows from Lemma 1.2 and Proposition 2.2.

Case 2. Γ is semi-simple, but not quasi-simple. We write Γ as a product $\Gamma = \Phi \cdot \Psi \cdot \Delta$, where Φ and Ψ are non-trivial quasi-simple groups and Δ is a (possibly trivial) semi-simple group. By (2.1) we have dim $\Gamma < \infty$, and thus we may assume that Φ is a quasi-simple factor of Γ of maximal dimension. The group Δ can be written as the product of at most two non-trivial semi-simple factors, because by Lemma 2.1 we have dim $\Delta \leq 8$ (note that dim $\Phi \cdot \Psi \geq 6 > 4$). Furthermore, we may assume that dim $\Phi \ge 6$, since for dim $\Phi \le 3$ we would have dim $\Gamma \le 3$ $\leq 4 \cdot 3 = 12$. Now $\langle d^{\Phi} \rangle = \mathcal{D}$ must hold for all $d \in \mathcal{D} \setminus \mathcal{F}_{\Phi}$, because the quasi-simple group Φ acts on $\langle d^{\Phi} \rangle$ with a zero-dimensional kernel, i.e. the factor Φ induces a six-dimensional group on $\langle d^{\Phi} \rangle$, which is impossible by [3] and Lemma 3.2 if dim $\langle d^{\Phi} \rangle = 4$. So we have $\langle d^{\Phi} \rangle =$ = \mathcal{D} . Set $\Lambda := \Psi \cdot \Delta$. Since Φ commutes with Λ and because of $\langle d^{\Phi} \rangle = \mathcal{D}$, the stabilizer Λ_d must be trivial. Consequently, we have dim $\Lambda \leq 8$. Now assume that dim $\Gamma \geq 17$. This implies that dim $\Phi \geq 9$. Applying Lemma 2.1 to Φ and Λ , we conclude that dim $\Lambda = 3$ and hence dim $\Phi \ge 14$. Finally, choose an element $d \in \mathcal{D} \setminus \mathcal{F}_{\Lambda}$. Then $\dim \langle d^{\Lambda} \rangle \ge 4$. If $\langle d^{\Lambda} \rangle = \mathcal{D}$, then $\dim \Phi \le 8$ (and hence $\dim \Gamma \le 11$), since A and Φ commute. Finally, if dim $\langle d^A \rangle = 4$, we obtain a contradiction as before.

2.4. Lemma. A commutative group Γ is at most eight-dimensional. If Γ is an eight-dimensional commutative group, then it is isomorphic to $\mathbb{R}^6 \times \mathbb{T}^2$.

Proof. Let $c \in \mathscr{D} \setminus \mathscr{F}_{\Gamma}$. Then dim $\langle c^{\Gamma} \rangle \ge 4$. If $\langle c^{\Gamma} \rangle = \mathscr{D}$, then the stabilizer Γ_c is trivial, because Γ is commutative. Thus we have dim $\Gamma \leq 8$. Suppose that dim $\Gamma = 8$. Then the group Γ acts sharply transitively on the complement $\mathscr{D} \setminus \mathscr{F}_{\Gamma}$. Hence the group Γ is a Lie group, and the double loop \mathcal{D} is a topological manifold (compare the proof of Lemma 1.3). Being a connected commutative Lie group, the group Γ is isomorphic to a product $\mathbb{R}^{l} \times \mathbb{T}^{8-l}$. Thus the homology groups $\mathbf{H}_n(\Gamma)$ of Γ vanish for $n \ge 2$. Applying Alexander duality to $\widehat{\mathcal{D}}$ and $\hat{\mathscr{F}}_{\Gamma}$ and noting that $\Gamma/\Gamma_c \approx c^{\Gamma} = \mathscr{D} \setminus \mathscr{F}_{\Gamma} = \hat{\mathscr{D}} \setminus \hat{\mathscr{F}}_{\Gamma}$ holds by [3, (3.1)], this implies that the cohomology groups $\tilde{\mathbf{H}}^n(\hat{\mathscr{F}}_{\Gamma})$ vanish for $0 \le n \le 5$. In particular, the dimension of \mathscr{F}_{Γ} is at least six by Lemma 3.1. So we have $\mathscr{F}_{\Gamma} = \mathscr{D}$, because the dimension of a finite-dimensional locally compact connected double loop is either 1, 2, 4, or 8, see [9, XI.8.5] and compare also [14]. But then we have $\Gamma = 1$, a contradiction. Thus we have dim $\Gamma \leq 7$ if $\langle c^{\Gamma} \rangle = \mathcal{D}$. Now let dim $\langle c^{\Gamma} \rangle = 4$ for every $c \in \mathcal{D} \setminus \mathscr{F}_{\Gamma}$. Fix some element $d \in \mathcal{D} \setminus \mathscr{F}_{\Gamma}$ and set $\mathscr{H} := \langle d^{\Gamma} \rangle$. Choose an element $e \in \mathcal{D} \setminus \mathcal{H}$. Since dim $\mathcal{H} = 4$, the group $\Gamma_d = \Gamma_{\mathcal{H}_1}$ operates freely on $\mathscr{D} \setminus \mathscr{H}$. In particular, the stabilizer Γ_d acts effectively on the four-dimensional sub-double-loop $\langle e^{\Gamma} \rangle$. This implies that dim $\Gamma =$ $= \dim d^{\Gamma} + \dim \Gamma_d \leq 4 + 4 = 8$, since the stabilizer Γ_d is at most fourdimensional by [3] and Lemma 3.2. Moreover, if dim $\Gamma = 8$, Lemma 2.4 of [3] yields $\Gamma_d \cong \mathbb{R}^3 \times \mathbb{T}$. Interchanging the roles of the elements d and e, the same is true for the stabilizer Γ_{e} . Finally we have $\Gamma = \Gamma_d \times \Gamma_e$, since $\Gamma_d \cap \Gamma_e = 1$ and dim $\Gamma_d = \dim \Gamma_e = 4$. This finishes our proof.

2.5. Proposition. If dim $Z(\Gamma) \ge 1$, then dim $\Gamma \le 16$.

Proof. Let $Z := Z(\Gamma)$ and choose an element $c \in \mathcal{D} \setminus \mathcal{F}_Z$. Since dim $Z \ge 1$, the sub-double-loop $\langle c^Z \rangle$ is of dimension at least four (see [9, XI.9.1., XI.9.3]). If $\langle c^Z \rangle = \mathcal{D}$, the stabilizer Γ_c is trivial, which implies that dim $\Gamma = \dim c^{\Gamma} \le \dim \mathcal{D} = 8$. So we may assume that $\mathcal{H} := \langle c^Z \rangle$ is four-dimensional. Then the stabilizer Γ_c acts freely on the complement $\mathcal{D} \setminus \mathcal{H}$, since $\Gamma_c = \Gamma_{[\mathcal{H}]}$. Thus we have dim $\Gamma_c \le 8$ and the assertion dim $\Gamma = \dim c^{\Gamma} + \dim \Gamma_c \le 8 + 8 = 16$ follows.

2.6. Theorem. The automorphism group Γ of a locally compact connected eight-dimensional double loop \mathcal{D} is at most 16-dimensional.

Proof. By Proposition (2.3) we may assume that the group Γ contains a non-trivial connected commutative normal subgroup Ξ . If

Ξ is compact, it is contained in the center of Γ and the assertion of the theorem follows by Proposition 2.5. So, for the remainder of the proof we may assume that Ξ is not compact and hence is isomorphic to ℝ^t for some t > 0. Moreover, by Proposition 2.2, we may assume that dim $\mathscr{F}_{\Gamma} = 0$. Hence, by Lemma 1.3 we may select an element $c \in \mathscr{D} \setminus \mathscr{F}_{\Gamma}$ with dim $c^{\Gamma} \leq 7$. Choose a minimal Γ_c^1 -invariant subspace $\Pi \leq \Xi$. Using the arguments of [21, (3.3)], we may assume that the stabilizer Γ_c is a Lie group, since otherwise the dimension of $\langle c^{\Gamma} \rangle$ would be four and then dim $\Gamma \leq 12$ by [3], because the group Γ leaves $\langle c^{\Gamma} \rangle$ invariant. Next, we may assume that Ξ moves the element *c*, since in the other case the fix-double-loop \mathscr{F}_{Ξ} is four-dimensional by Lemma 3.3, and as before we conclude that dim $\Gamma \leq 12$, because Γ leaves \mathscr{F}_{Ξ} invariant.

In the following step we shall show that it suffices to consider the case where $\langle c^{\Pi} \rangle \neq \mathcal{D}$. Assume that $\langle c^{\Pi} \rangle = \mathcal{D}$ holds. Then Γ_c^1 acts effectively and irreducibly on the vector group Π . Consequently, the group Γ_c^1 is a linear Lie group with a radical of dimension at most two, see [8, 19.14, 19.17]. Now the assumption dim $\Gamma \ge 17$ implies that dim $\Gamma_c^1 \ge 10$, and therefore a Levi-complement Σ of Γ_c^1 is at least eight-dimensional. Being a linear semi-simple Lie group, Σ thus contains commuting involutions. Hence, we have dim $\Gamma \le 16$ by Lemma 1.2 and Proposition 2.2. So we may assume that $\langle c^{\Pi} \rangle \neq \mathcal{D}$. For the rest of the proof we also suppose that dim $\Gamma \ge 17$. We shall distinguish two cases.

Case 1. The element c is fixed by the vector group Π . Then the fix-double-loop \mathscr{F}_{Π} is four-dimensional by Lemma 3.3, since the element c is moved by the group Ξ . Set $\Pi^* := (\Xi \cap \Gamma_c^1)^1$. Since Γ_c^1 is closed in Γ and the group Π is contained in Π^* by assumption, we have $\Pi^* \cong \mathbb{R}^s$ for some s > 0. Moreover, the fix-double-loop \mathscr{F}_{Π^*} is four-dimensional by Lemma 3.3, since $\mathscr{F}_{\Pi^*} \neq \mathscr{F}_{\Xi}$. The group Π^* is a normal subgroup of Γ_c^1 , because Ξ is normal in Γ . Thus the product $\Xi \Gamma_c^1$ leaves the Baer double loop \mathscr{F}_{Π^*} invariant and by Lemma 3.2 and [3] we obtain the inequality

$$\dim \Xi \Gamma_c^1 = \dim \Xi \Gamma_c^1 | \mathscr{F}_{\Pi^*} + \dim d^{\Xi \Gamma_c^1} \leq 4 + 7 = 11$$

for some element $d \in c^{\Gamma} \setminus \mathscr{F}_{\Pi^*}$. Using the (topological) isomorphism $\Xi \Gamma_c^1 / \Xi \cong \Gamma_c^1 / \Xi \cap \Gamma_c^1$ this yields the inequality

$$\dim \Gamma_c^1 = \dim \Xi \Gamma_c^1 - \dim \Xi + \dim (\Xi \cap \Gamma_c^1) \leq 11 - t + s.$$

Since dim $\Gamma \ge 17$ and dim $c^{\Gamma} \le 7$, we have dim $\Gamma_c^1 \ge 10$, and therefore $t - s \le 1$ holds. If the orbit d^{Ξ} generates \mathscr{D} for some element $d \in c^{\Gamma}$, then the stabilizer Ξ_d is trivial and thus $\Xi_c = \Xi_{d^{\delta}} = (\Xi_d)^{\delta} = 1$ for some automorphism $\delta \in \Gamma$ satisfying $d^{\delta} = c$. But this would contradict the fact that $1 \ne \Pi \le \Xi_c$. Consequently, we have dim $\langle d^{\Pi^*} \rangle = 4$ for every $d \in c^{\Gamma} \backslash \mathscr{F}_{\Pi^*}$. Furthermore, the group Π^* acts effectively on $\langle d^{\Pi^*} \rangle$, because \mathscr{D} is generated by \mathscr{F}_{Π^*} and the element d. Since Π^* is isomorphic to \mathbb{R}^s , this implies that $s \le 3$ by [3, (2.4)]. Thus we have $t \le 1 + s \le 4$. Let P denote a closed one-parameter subgroup of Π^* . Since dim $\mathscr{F}_{\Pi^*} = 4$, we have $\mathscr{F}_{\mathsf{P}} = \mathscr{F}_{\Pi^*}$ by Lemma (3.3). Therefore, the centralizer $\Theta := C_{\Gamma} \mathsf{P}$ leaves \mathscr{F}_{P} invariant, and as before we infer that dim $\Theta \le 11$. Finally, considering the action of Γ on the space of all one-dimensional subspaces of Ξ we obtain that

$$\dim \Gamma \leq \dim \Theta + \dim \Xi \leq 11 + 4 \leq 15$$

which contradicts our assumption dim $\Gamma \ge 17$.

Case 2. The element *c* is moved by the vector group Π . Then the double loop $\mathscr{H} := \langle c^{\Pi} \rangle$ is four-dimensional. Since Γ_c^1 acts on Π and fixes the element *c*, it leaves \mathscr{H} invariant. This implies that

$$\dim \Gamma_c^1 = \dim(\Gamma_c^1)|_{\mathscr{H}} + \dim d^{\Gamma_c^1} \leq 4 + 7 = 11$$

for some $d \in c^{\Gamma} \setminus \mathscr{H}$. Let $\mathbb{N} \leq \Gamma_{c}^{1}$ denote the kernel of the action of Γ_{c}^{1} on Π and set $\Lambda := \Gamma_{[\mathscr{H}]}$. Then we have $\mathbb{N} \leq \Lambda$. In the following we shall show that in fact $\mathbb{N} = \Lambda$. For this, we first verify that $c^{\pi} \neq c$ holds for all $\pi \in \Pi \setminus \{1\}$. By Lemma 3.3, either $c^{\pi} \neq c$ or $\mathscr{F}_{\pi} = \mathscr{H}$ holds for any $\pi \in \Pi \setminus \{1\}$. Consider the set $\Pi^* := \{\pi \in \Pi \mid \mathscr{H} \leq \mathscr{F}_{\pi}\}$. Using the same arguments as in the proof of Proposition 2.2 we infer that $\Pi^* = 1$ and hence $c^{\pi} \neq c$ holds for all $\pi \in \Pi \setminus \{1\}$. Now we are able to prove the inclusion $\Lambda \subseteq \mathbb{N}$. For this, choose an element $\lambda \in \Lambda$. Suppose that there is an element $\pi \in \Pi$ with $\lambda^{-1}\pi\lambda \neq \pi$. Then $1 \neq \mathscr{G} := \lambda^{-1}\pi\lambda\pi^{-1} \in \Pi$, and from the preceding arguments we infer that $c^{\mathscr{G}} \neq c$. On the other hand, we have $c^{\mathscr{G}} = c^{\lambda^{-1}\pi\lambda\pi^{-1}} = c^{\pi\lambda\pi^{-1}}$, and since $\lambda \in \Lambda$ and $c^{\pi} \in \mathscr{H}$, we conclude that $c \neq c^{\mathscr{G}} = c^{\pi\lambda\pi^{-1}} = (c^{\pi})^{\pi^{-1}} = (c^{\pi})^{\pi^{-1}} = c$, which is a contradiction. This proves the equation $\mathbb{N} = \Lambda$.

Now, the quotient group $\Gamma_c^1/N = \Gamma_c^1/\Lambda$ acts effectively and irreducibly on Π , since Π has been chosen to be minimal Γ_c^1 -invariant. By [8, §19.14, §19.17] this implies that there is a semi-simple linear Lie group Σ (possibly $\Sigma = 1$) such that $\Sigma \leq \Gamma_c^1/N \leq \Sigma \mathbb{C}^{\times}$. Thus either $\Gamma_c^1/N \leq \mathbb{R} \text{ or } \Gamma_c^1/N \text{ contains a torus subgroup. In the second case, the involution <math>\omega$ which is contained in the torus subgroup induces an involution $\omega^* := \omega|_{\mathscr{H}} \text{ on } \mathscr{H} \text{ (note that } N = \Lambda).$ By [3, (3.3)], we have $1 \leq \dim \mathscr{F}_{\omega^*} \leq 2$ and the desired inequality dim $\Gamma \leq 16$ follows from Proposition (2.2). So it remains to study the case where $\Gamma_c^1/N \leq \mathbb{R}$. In this case, however, we immediately obtain that

 $\dim \Gamma_c \leq \dim \mathbb{N} + 1 = \dim \Lambda + 1 = \dim d^{\Lambda} + 1 \leq 7 + 1 = 8$

for every element $d \in c^{\Gamma} \setminus \mathscr{H}$, and thus we have

 $\dim \Gamma = \dim c^{\Gamma} + \dim \Gamma_c \leq 7 + 8 = 15,$

which finishes the proof.

3. Appendix

3.1. Lemma. Let \mathscr{D} be a locally compact connected double loop of arbitrary finite (covering) dimension n. Let U be a compact neighborhood in \mathscr{D} . Then the following statements hold:

(a) dim $U = \text{ind } U = \text{Ind } U = \dim_L U = n$ for every principal ideal domain L, where dim_L denotes the cohomological dimension with coefficient domain L.

(b) The relation $\dim (U \times X) = \dim U + \dim X$ holds for every, locally compact paracompact space X.

Proof. The first assertion follows from Theorem 15.7 of [5] and from the fact that the covering dimension and the small and large inductive dimension coincide for a separable complete metric space, see [9, XI.1.2]. The second assertion follows from the equation dim $U = \dim_{\mathbb{Z}_p} \mathcal{D}$ which holds for every prime number p by part (a), and from a theorem of Y. KODAMA in [13, p. 400].

3.2. Lemma. Let \mathscr{D} be a locally compact connected double loop of arbitrary finite dimension n. Let \mathscr{H} be a closed sub-double-loop of \mathscr{D} which is invariant under a locally compact automorphism group Γ of \mathscr{D} . The kernel of the action of Γ on \mathscr{H} is denoted by Λ . Then the quotient group $\Delta = \Gamma/\Lambda$ of Γ is a topological transformation group on \mathscr{H} with respect to the quotient topology τ_Q , and dim $(\Delta, \tau_Q) = \dim(\Delta, \tau_{co})$, where τ_{co} denotes the compact-open topology on Δ with respect to the action of Δ on \mathscr{H} .

Proof. Let $\Phi: \mathscr{H} \times \Gamma \to \mathscr{H}$ be the evaluation mapping. Since \mathscr{H} is locally compact, the compact-open topology on Δ is the coarsest topology such that the mapping Φ is continuous. Thus the topology τ_Q on Δ is finer than the topology τ_{co} , since the group (Δ, τ_Q) evidently is a topological transformation group on \mathscr{H} . But his means that the identity mapping id: $(\Delta, \tau_{co}) \to (\Delta, \tau_Q)$ is continuous. Since Γ is locally compact by [2], we may select a compact neighborhood U of the identity 1 in (Δ, τ_{co}) . The restriction id $|_U:(U, \tau_{co}) \to (U, \tau_Q)$ is a homeomorphism. Hence we conclude that

$$\dim(\Delta, \tau_{co}) = \operatorname{ind}(\Delta, \tau_{co}) = \operatorname{ind}(U, \tau_{co}) = \operatorname{ind}(U, \tau_Q) =$$
$$= \operatorname{ind}(\Delta, \tau_Q) = \dim(\Delta, \tau_Q),$$

and the lemma is proved.

3.3. Lemma. If $1 \neq \Phi \leq \Gamma$ is a connected normal subgroup, then $\mathscr{F}_{\Phi} = \mathscr{F}_{\Gamma}$ or \mathscr{F}_{Φ} is four-dimensional. If $1 \neq \gamma \in \Gamma$ and dim $C \geq 1$, where $C := (C_{\Gamma}\gamma)^{1}$, then $\mathscr{F}_{\gamma} = \mathscr{F}_{C}$ or \mathscr{F}_{γ} is four-dimensional.

Proof. Since Φ is a normal subgroup of Γ , the fix-double-loop \mathscr{F}_{Φ} is Γ -invariant. If $\mathscr{F}_{\Phi} \neq \mathscr{F}_{\Gamma}$, then Γ acts non-trivially on \mathscr{F}_{Φ} . Because the group Γ is connected, this implies that dim $\mathscr{F}_{\Phi} \ge 4$ and thus \mathscr{F}_{Φ} is four-dimensional. Similarly, the connected group C acts on \mathscr{F}_{γ} and the claim follows as before.

References

- BÖDI, R.: On the embedding of zero-dimensional double loops in locally euclidean double loops. Resultate der Math. 22, 657–666 (1992).
- [2] BÖDI, R.: Automorphism groups of locally compact connected double loops are locally compact. Arch. Math. 63, 291–294 (1993).
- [3] BÖDI, R.: On the dimensions of automorphism groups of 4-dimensional double loops. (to appear in Math. Z.).
- [4] BOREL, A.: Seminar on transformation groups. Ann. of Math. Stud. 46, Princeton: Univ. Press. 1960.
- [5] BREDON, G. E.: Sheaf Theory. New York: McGraw-Hill. 1967.
- [6] CARTAN, H., EILENBERG, S.: Homological Algebra. Princeton: Univ. Press. 1956.
- [7] DOLD, A.: Lectures on Algebraic Topology. Berlin-Heidelberg-New York: Springer. 1972.
- [8] FREUDENTHAL, H., DE VRIES, H.: Linear Lie Groups. New York-London: Academic Press. 1969.
- [9] GRUNDHÖFER, T., SALZMANN, H.: Locally compact double loops and ternary fields. In: Chein, O., Pflugfelder, H. D., Smith, J. D. H., (eds.) Quasigroups and Loops: Theory and Applications. pp. 313-356. Berlin: Heldermann. 1990.
- [10] HALDER, H. R.: Dimension der Bahn lokal kompakter Gruppen. Arch. Math. 22, 302-303 (1971).
- [11] HEWITT, E., Ross, K. A.: Abstract Harmonic Analysis I, 2nd edn. Berlin-Heidelberg-New York: Springer. 1979.

- [12] IWASAWA, K.: On some types of topological groups. Ann. of Math. 50, 507-558 (1949).
- [13] KODAMA, Y.: A necessary and sufficient condition under which dim $X \times Y = \dim X + \dim Y$. Proc. Japan Acad. 36, 400-404 (1960).
- [14] LÖWEN, R.: Topology and dimension of stable planes: On a conjecture of H. Freudenthal. J. Reine Angew. Math. 343, 108-122 (1983).
- [15] MASSEY, W. S.: Singular Homology Theory. Berlin-Heidelberg-New York: Springer. 1980.
- [16] MONTGOMERY, D., ZIPPIN, L.: Topological Transformation Groups. New York: Wiley. 1955.
- [17] Mostow, G. D.: The extensibility of local Lie groups of transformations. Ann. of Math. 52, 606-636 (1950).
- [18] NAGAMI, K.: Dimension-theoretical structure of locally compact groups. J. Math. Soc. Japan 14, 379-396 (1962).
- [19] PEARS, A. R.: Dimension theory of general spaces. Cambridge: University Press. 1975.
- [20] SALZMANN, H.: Topological planes. Adv. Math. 2, 1-60 (1967).
- [21] SALZMANN, H.: Automorphismengruppen achtdimensionaler Ternärkörper. Math. Z. 166, 265–275 (1979).
- [22] SALZMANN, H.: Compact 8-dimensional projective planes with large collineation groups. Geom. Dedicata 8, 139-161 (1979).
- [23] SMITH, P. A.: New results and old problems in finite transformation groups. Bull. Amer. Math. Soc. 66, 401-415 (1960).
- [24] SPANIER, E. H.: Algebraic Topology. New York: McGraw-Hill. 1966.
- [25] VÖLKLEIN, H.: Transitivitätsfragen bei linearen Liegruppen. Arch. Math. 36, 23-34 (1981).

RICHARD BÖDI Mathematisches Institut Universität Tübingen Auf der Morgenstelle 10 D-72076 Tübingen Federal Republic of Germany mmisa01 @mailserv.zdv.uni-tuebingen.de

16