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Abstract. Let ~ be an eight-dimensional, locally compact, connected double loop. It is 
proved that the dimension of the automorphism group Aut ~ with respect to the compact-open 
topology is at most 16. 

Throughout this paper, let 9 denote a locally compact, connected 
double loop and let F be a closed subgroup of the full automorphism 
group of 9 ,  which is taken with the compact-open topology. By [14] 
and [9, XI.8.5], the (covering) dimension of 9 is 1, 2, 4, 8, or, possibly, 
~ .  Excepting the appendix and Lemma (1.1), the dimension of 9 is 
always assumed to be eight. By [2], the group F is a locally compact 
transformation group of 9 and so the covering dimension coincides 
with both inductive dimensions (see [18, Thm. 2.1] ). The same is true 
for the double loop 9 (see Lemma (3.1) of the appendix). In the case 
where 9 is an eight-dimensional ternary field, H. SALZMANN has 
shown in [21] that either the connected component ofF is isomorphic 
to the compact exceptional simple Lie group G2, o r  dim F < 14. This 
result depends on a compactness criterion for the group F (see [21, 
(2.2)]). For double loops such a criterion is not yet known. 

For a subset M ___ 9,  the smallest closed sub-double-loop of 9 
containing M is denoted by ( M ) .  The double loop ( M )  is said to 
be generated by M. If ( M )  # 9 ,  then dim (M)~{0,  1, 2, 4} by the 
above result. Note that no example of a locally compact, connected 
double loop containing a 0-dimensional double loop is known. We 
shall call ~ := (1)  the prime double loop of 9 .  For any subgroup 
of F, we denote by ~-~ the set of all those elements of 9 that are fixed 
by every automorphism tp ~ .  Clearly, ~,~ is a closed sub-double-loop 
of 9 .  If �9 leaves a sub-double-loop ~ of 9 invariant, it induces on 
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J :  an automorphism group O I g ,  see also (3.2) of the appendix. We 
shall write Ftg J for the (closed) subgroup of F that fixes ~ poi~wise. 
The one-point compactification ~ w  {~} of ~ is denoted by ~; it is 
homotopy equivalent to 58, see [14] and [9, XI.8.5]. All occurring 
homology groups are assumed to be singular homology groups with 
coefficient domain 7/, whereas the cohomology groups are used in the 
sense of Alexander-Spanier-t~ech (see e.g. [24, Chap. 6, Sect. 4] or 
[15, Chapt. IX, w 6]). Reduced (co-)homology groups are written with 
a tilde on top. When speaking about dimension in general, we always 
mean the covering dimension dim. Unless stated otherwise, we may 
assume by the sum theorem (see [19, w 2.5]) that the group F is 
connected, since we are only interested in the topological dimension 
of F. The center of F is denoted by Z(F). We use the symbol ~- for the 
circle group. 

1. The Dimensions of F-Orbits 

To obtain upper bounds for dim 1-', we first have to establish 
non-trivial upper bounds for the dimensions of F-orbits. The 
following lemma generalizes a result of H. SALZMANN [22]. 

1.1. Lemma. Let dim ~ >~ 2. For any element c e ~  which generates 
a two-dimensional sub-double-loop of ~, the inequality 

dim c r ~< dim ~ - 2 
holds. 

Proof Let cg:= (c )  be a two-dimensional sub-double-loop. We 
may assume that Cr else the inequality stated in the lemma holds 
trivially. Then ~ : =  ~rC~Cg < cg and therefore d i m ~  = 1 by [9, 
XI.9.2]. Moreover, the sub-double-loop cg is generated by any element 
of the set cg \~ .  Consider the continuous map 

r/:c~\o~ x F--,~:(x,~)~-~x :1 .  

Because for any element x e N  the preimage t/~- (x) is a closed subset 
of c g \ ~  x F, the monotony theorem (see [19, w 6.2]) implies that 

dim r/*- (x) ~< dim (~\o~ x F). 

Since dim ( c ) =  2 and dim ( M ) e { 2 ,  4, 8} if ceM, we can find two 
elements x, y e ~  such that @ = (c, x, y). Thus, the stabilizer Fc,x,y is 
trivial and we conclude that dim F ~< 3 d i m N <  oo by repeated 
application of the dimension formula [10]. Hence, we have dim(Cg\o ~ x 
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x F) < oo. In particular, there is some element d e ~  with dim 1/'- (d) = 
= dim r/: = supx~ dim t/*- (x). Select arbitrary compact neighborhoods 
U _  c g \ ~  and f~ = f ~ - 1 ~  F, and let r/* be the restriction of r/ to 
U x f~. Since U x f~ is compact, the map q*: U x f] ~ U n is a closed 
surjection, and thus we obtain from [19, w 2.6] the inequality 

dim (U x fl) ~< dim U n + dim t/*. 

Using the sum theorem [19, w 2.5] and Lemma (3.1) of the appendix, 
this yields 

d i m ~  + d i m F  = dim U + dimf~ = d im(U x f~) ~< d i m ~  + dim t/*. 

In particular, we have 

dim F - dim t/* ~< dim ~ - 2. 

Thus we have to prove the inequality dim r/* ~< dim F~, since dim F = 
= dim Fc + dim c r holds by [10]. Moreover, it is sufficient to verify 
that 

dim r/~- (d) ~< dim Fc, 

because we have dim r/* ~< dim r /= dim t/~- (d). Fix an element bedr~ 
n ~ \ o ~ .  Then the sub-double-loop ~ is invariant under an auto- 
morphism 7eF  if and only if the element b y lies in ~, since ~ is 
generated by any element x e ~ \ j ~ .  Because a connected two- 
dimensional double loop has at most two continuous automorphisms 
(see [9, XI.9.3]), the set ~ n b  r thus contains at most two elements b 
and b'. Select f i eF  with b p = b' and choose an automorphism f ieF 
with b 6-' = d. Setting 

AI :=  {(b,7)e{b} x rib = b ~-'~} 

and 

we obtain 

A2:= {(b',v)e{b' } x Fib'= b ~-',} 

t/~- (d) = A 1 u A  2. 

The sets A 1 and A 2 have identical dimensions, because they are 
homeomorphic  via the map (b,v)~-~(b~,7~). Thus the sum theorem 
yields that dim o~- (d) -- dim A 1. The set A 1 is homeomorphic  to 
{yeF[b = b ~ = { ~ e 6 - ' F [ b  = b  ~} ~ F  b. Finally, we have F b =Fc ,  
because ~ = (b )  = (c) ,  and the lemma is proved. 
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The next lemma studies the double loop ~ r  of fixed elements if 
F is a finite (non-connected) elementary abelian group or a torus 
group of rank two. 

1.2. Lemma.  Let F '~ 2 2 for some prime number p. Then ~ r  is -~- p 

one- or two-dimensional, l f  p = 2 and dim ~ r  = 2, then dim ~ = 4 for 
every 7eF\{~}.  I f  F ~- q[2, then ~ r  is two-dimensional. 

Proof Let F ~ 7/2 Then the fix-double-loop ~ r  is connected by -~- p. 

[3, (3.3)]. If ~ r  would be four-dimensional,  all elements of F would 
fix ~ r  pointwise which is impossible by [6, p. 262]. Thus  ~'~r is either 
one- or two-dimensional.  Now let p = 2 and dim ~ r  = 2. Let a, b, and 
c denote  the dimensions of the fix-double-loops of the three elements 
in F\{~}. Then  a, b, c~{2,4}. By [3, (3.2)] we may  apply [4, Chapt.  
XIII, w Th. 2.3] and obtain the relation a + b + e = 12 which implies 
that  a = b = c = 4. Finally, let F - Y 2. Then F contains an elementary 
abelian subgroup of rank two and thus ~ r  is one- or two- 
dimensional.  If d im ~-r  = 1, using the nota t ion  from above, we obtain 
a + b + e =  10. Hence, we may  assume that  a = 2 .  Since F is a 
connected abelian group, it must  fix the corresponding two-dimen- 
sional fix-double-loop pointwise, which is a contradiction.  Hence we 
have dim ~ r  = 2. 

1.3. Lemma.  I f  d im ~-r  = 0, then there exists an element ce~\~,~r 
with dim c r ~< 7. 

Proof Suppose that  d im c r = 8 for every element c e ~ \ ~ r .  Then 
F acts transitively on the complement  ~ \ ~ r  by [3, (3.4)], the double 
loop ~ is a topological  manifold homeomorph ic  to R 8 ([20, 7.12] and 
[14, 5.2]), and the group F is a Lie group by [16, (6.3)]. Moreover,  
the orbit  c r is h o m e o m o r p h i c  to the homogeneous  space F/Fc by [3, 
(3.1)]. Since the complement  ~ \ ~ r  is simply connected by [1], this 
implies that  F /F  c is simply connected as well. Applying Alexander 
duality to ~ and ~ ' r ,  we obtain for 0 ~< k ~< 7 the i somorphisms 

I k(V/Vc) I k(c r) fik( \ r) 7 

Note  that  for formulat ing Alexander duality for non-manifolds  ~ ' r  
we have to take Alexander-Spanier  cohomology  groups, see e.g. [15, 
Th. 6.6, p .222-223]  or [7, VIII, 8.15]. Hence we have ITI~(F/Fc) = 0 if 
0 ~< k ~< 6 and H 7 (F/Fc) = ( ~ 7 / ,  because ~ ' r  is either finite or homeo-  
morphic  to the Cantor  set, see [-9, XI.1.5]. In any case, o~- r contains 
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at least three path components (namely the singletons 0, 1, and m), 
which implies that ~ ~> 2. Since the quotient F/F~ is simply connected, 
we may apply the Hurewicz isomorphy theorem (see [24, w Sect. 5, 
Yh. 4]) and obtain the relation zcv(F/F~)~ HT(F/Fc)= @~Z. Thus, 
we have the following part of the long homotopy sequence 

rcT(r ) , ~)~Z , rc6(F~). 

According to our general assumption that F is connected, the 
maximal compact subgroup K of F is a connected subgroup of 
Spin 3 R, else F would contain an elementary abelian subgroup of rank 
two and hence ~-r would be connected by Lemma 1.2. In particular, 
the group K is either trivial or isomorphic to one of the groups 7]- ~ N~ 
or Spin 3 ~ 3 .  By the Malcev-Iwasawa theorem [12, Th. 13, 
p. 549], the groups F and K are homotopy equivalent. This implies 
that the homotopy group z~7(F ) is finite, see [24, Chapt. 9, Sect. 7, 
Th. 7]. Moreover, the stabilizer F~ is also connected, because the 
quotient space F/F~ is simply connected [17, Chapt. 2, w Cor. 1]. As 
before, this implies that F~ is homotopy equivalent to 5a, ga, or to a 
one-point space. Hence, the group 7C6(F~) is also finite, see again [24, 
Chapt. 9, Sect. 7, Th. 7]. Now, the exactness of the sequence above 
implies that the kernel of fl is infinite, which contradicts the fact that 
the image of e is finite. 

2. Upper Bounds for dim F 

2.1. Lemma. Let �9 and vp be non-trivial connected subgroups o f f  
which centralize each other. Then, both groups are at most eight- 
dimensional or one of  them is at most four-dimensional. 

Proof. If ~-r =~ ~-,e, then dim ~-a, = d i m ~  = 4 by Lemma 3.3, 
and hence by [-10], both groups q) and �9 are at most eight-dimensio- 
nal. Thus in the sequel we may assume that ~q, = ~-v = : ~ .  

Case 1. For each c 6 ~ \ ~  we have <c~> # ~  # <c~>. Then 
dim (c~'> = dim <c'I'> = 4 by [9, XI.8.5, XI.9.33 and, in particular, we 
have dim c ~' ~< 4 and dim c ~' ~< 4 for every c 6 ~ \ ~ .  Since the groups 
@ and ~P commute, the stabilizer q)c fixes the sub-double-loop <c'e> 
pointwise and thus acts freely on the complement 9 \  <c '~ >. Hence we 
have dim @c -- dim d ~~ + dim q)~,d ~< 4 + 0 = 4 for some d6~\<c~/> 
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and consequently dim �9 ~ 8 holds. Interchanging the roles of the 
groups ~ and W this also gives dim W ~< 8. 

Case 2. For all c e g \ o ~  we have (c  a') ~ 9 ,  and there is some 
d e g \ ~  with (d  'I') = 9 .  Then the stabilizer ~d is trivial, since the 
groups q~ and qJ commute.  As in the first case we conclude that 
dim d ~ ~< 4, and thus dim q~ = dim d ~ ~ 4 holds. 

Case 3. There exist elements c, d e g \ o ~  such that (c  ~  = 9 = 
= ( d r ) .  As in the second case we have ~a = ~ = We, which immediately. 
implies by [10] that dim q~ = dim d ~ ~< 8 and dim q' = dim c v ~< 8. 

We first study the case where F has a connected fix-double-loop. 

2.2. Proposition. I f d i m o ~  r ~> 1, then d i m F  ~< 16. 

Proof. For  dim o~r >~ 2 the assertion of the proposition is trivial 
by [10], since in this case the double loop 9 is generated by ~ r  and 
two additional elements of the complement 9 \ Y r .  Thus let dim ~-r = 1. 
Since by [9, XI.8.5, XI.9.3] we have dim (c r) ~> 4 for all c e g \ ~ r ,  we 
shall distinguish two cases. If dim (c v) = 4 for some c e g \ ~  r, then 
the group F acts on ~ : =  (c  r )  and we obtain 

d i m F = d i m F l ~  + d i m F t ~  1~<4+ 8 = 12 

by Lemma.(3.2) of the appendix and [3]. Turning to the second case 
we have (c r )  = 9 for all c e g \ o ~  r. If there is an element c e g \ ~  r 
such that dim ( c )  ~> 4, then there exists another  element d e 9  with 
9 = (c,d). Thus the stabilizer Fc,d is trivial and this implies that 
d i m F  = d imc  r + d i m d  r" ~< 8 + 8 = 16. Hence, we may assume that 
dim ( c )  = 2 for each c e g \ o ~  r and we conclude that dim c r ~< 6 holds 
for all c e g \ o ~  r by Lemma 1.1. Now, since o~ r is connected and since 
9 is generated by c r, the double loop 9 is generated by ~ r  and at 
most three additional elements of the orbit c r. This leads to the 
inequality dim F ~< 3 dim c r ~< 18. Furthermore,  we may assume that 
dim c r = 6, since we have dim F ~< 3- 5 = 15 if dim c r ~< 5. So, for the 
rest of the proof we may assume that 17 ~< dim F ~< 18. 

Case 1. F is semi-simple. Since there is no quasi-simple group of 
dimension 17 or 18, the inequality 17 ~ dim F ~< 18 implies that F is 
not  quasi-simple. Let Z denote the center of F. By Lemma (3.3), either 
o~z = o~ for every (eZ\{~} or there is some element ~0eZ\{~} with 
dim o~;o = 4. Suppose that Z has at least three elements. If o~z = ~ 
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for all (eZ\{~}, by [9, XI.9.1, XI.9.3] this implies that dim (c z) >~ 4 
for all c e g \ Y z ,  and hence dim F = dim c r + dim F c ~< 6 + 6 = 12 
holds. If, on the other hand, we have d i m ~  = 4 for some ~eZ\{~}, 
then the group F leaves ~~ invariant, which implies that dim F = 
= d i m F I J ~ + d i m F [ ~ - ~ ]  ~ 4 + 6 =  10 by [3]. So let IZl~<2. Then 
the group F is a Lie group which has a maximal torus subgroup of 
dimension at most two (toroidal rank at most two), see [9, XI.9.6]. 
Hence the group F has exactly two quasi-simple factors of toroidal 
rank one, because the universal covering of SL2R is excluded by 
[Zl ~< 2. But semi-simple Lie groups of toroidal rank one are at most 
eight-dimensional, and so dim F ~< 16 follows. 

Case 2. F is not semi-simple. Then the group F contains a minimal 
connected closed abelian normal subgroup E :~ ~ which is either 
compact or isomorphic as a topological group to a vector group W. 
Since E is connected, every orbit c ~" for c ~ 9 \ ~ =  generates a sub- 
double-loop of dimension at least four, see [9, XI.8.5, XI.9.3]. If 
dim (c  F') = 4, the stabilizer F c acts on (c-~), and we obtain dim Fc = 
= dim F~ [<c-) + dim Ft<c~}j ~< 4 + 6 = 10 by [3] and Lemma (3.2). This 
implies that dim F ~< 10 + 6 = 16. 

So for the rest of the proof we may assume that (c -=) -- 9 .  If E is 
compact and hence central in F (see [11, (26.20)]), the stabilizer F~ is 
trivial and thus dim F ~< 6 follows. Hence we may assume that E is a 
vector group and that the stabilizer F~ acts effectively on E Let F 1 

C 

denote the connected component  of Fc containing the identity and let 
YI ~< E denote a minimal F~-invariant subspace of E Applying 
Lemma 3.3 to ~ and l-I, we obtain that either ~-n is four-dimensional 
and F 1 acts on ~ n ,  or c n ~ c. If dim ~-ri = 4, we conclude as before 

C 

that dim Fc ~< 4 + 6 = 10 and so dim F <~ 10 + 6 = 16 holds. If c n :~ c, 
then we either have dim (c  n )  = 4, which implies that dim F = dim c r + 
+ dim Fc ~< 6 + 10 = 16, or (c n )  = 9 .  So it remains to study the case 
(c n )  = 9 .  Then F 1 acts effectively and irreducibly on the vector space 
I-I, since I-I is a minimal F~-invariant subspace of E By [8, 19.14, 
19.17], this implies that F a is a linear Lie group whose radical A is a r 

closed connected subgroup of C • lying in the center of F1 Let q? 
denote a Levi complement of F 1 By [9, XI.9.6] the dimension of the 
maximal torus of F ~ is at most two. Consequently, if A ~ C • then 

C 

the maximal torus of ~ is at most one. Thus, by the classification of 
quasi-simple Lie groups we conclude that dim W ~< 8. Then dim F~ = 
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= dim F~ = dimW + dim A ~< 8 + 2 = 10 which yields dim F ~< 16. 
Hence we may assume that dim A ~< 1. 

Now, the set 17":= {ze171cEff~} forms a subgroup of H which is 
F~-invariant, since for n e l l ,  c e ~ ,  and 7eF  we have c r e ~  and thus 
c ~ = c implies that nreYl *. Hence the set 17" is F~-invariant. Because 
of c n :~ c, we moreover  have 17" ~ 17. But the group 17 is a minimal 
F~-invariant subgroup. We conclude that 17" = ~ and hence c" ~ c for 
all ne17\{~}. In particular, we have d i m ( c  P) ~>4 for every one- 
parameter  subgroup P of 17 and s :=  dim 17 ~< 6. Now, the stabilizer 
F 1 either acts transitively on 17, or there is a one-parameter  subgroup 

C 

P of 17 such that dim F~/|  < s, where | is the centralizer of P in F 1 c- 
In the first case, F~ acts transitively on the projective space ~ _  1 R of 
all one-parameter  subgroups of 1-I. If there is a one-parameter  
subgroup P with (c  P) = 9 ,  then | = 4, because | fixes c. This leads 
to 

dim F = dim F~/O + dim O ~< s ~< 6 

and hence we have d i m F = d i m F  c + d i m c  r ~<6 + 6 = 12. So we 
may assume that (c  P) < ~ holds for all one-parameter  subgroups P 
in 17. For  the rest of the proof let us fix a one-parameter  subgroup P 
in 17 and let O be its centralizer in F ~ Since O acts freely on the 
complement  ~ \ ( c P ) ,  we have d imO = d imd  ~ + dim Oa ~< d imc  r + 
+ 0 ~< 6 for every decr \ ( cP) .  Such an element d exists, because we 
have assumed that dim c r = 6. Altogether, we have 

dim F c = dim F~/O + dim 0 ~< s + 6. (,) 

Thus, in the sequel we may suppose that s ~> 5. Since dim A ~< 1 and 
11 ~< dim Fr ~< 12, the Levi-complement tt' has one of the dimensions 
10, 11, or 12. We will study each of these cases separately by using 
the classification of quasi-simple Lie groups and their representations. 

a) dim W = 10. Then W is quasi-simple and locally isomorphic to 
an orthogonal  group SO5,,~. Since groups locally isomorphic to 
SOs,,R have no irreducible representation of dimension 6, we 
conclude that s ~< 5. The stabilizer Fc has dimension at most 11, since 
dim A ~< 1. On the other hand, by what we have proved above we have 
dim F~ ~> 11, and hence we know that dim F c = 11. Choose an element 
d~crn(cP)\(c). I f d  r~ ~_ (cP),  then d imd  r~ ~< d i m ( c  P) = 4 and we 
conclude that 

dim F, = dim d r~ + dim F~,d ~< 4 + dim Fc,a. 
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For every element e ~ c r \ ( c  P) we have ~ = ( c ,d , e )  and thus we 
conclude that dim Fc,d ~< dim e rc,d ~< dime r = dim c r = 6. Consequent- 
ly, we obtain dim Fc ~< 10, which is a contradiction. Hence, we may 
assume that the orbit d rc is not contained in (c  P) and therefore we 
may select an element e~drc\  (cP). As before we have ~ = (c, d, e). 
Thus, the stabilizer Fc,d. e is trivial, which implies that 

11 = dim F c = dim d rc + dim F~,a = dim d r~ + dim e rc,d. 

Since we have chosen the element d in the orbit c r, we infer that 
dim d v~ <<. dim c r = 6 and just so from e~d r~ we get dim e v~,~ <<. dim d re. 
By the equation above, this implies that dim e r~ = 5 (and dim d v~ = 6), 
and we infer that 

dim tO = dim e ~ ~< dim e re," = 5, 

because the centralizer tO fixes (c P) = (c, d )  pointwise. By inequality 
(.), this yields dim F~ ~< s + 5 ~< 10, which again is a contradiction. 

b) dim q-' = 11. In this case, the group q~ cannot be quasi-simple 
and, moreover, it is the product of an eight-dimensional quasi-simple 
group q'l  and a three-dimensional quasi-simple group ~2. Since 
is a linear group, a maximal torus subgroup of q~ has dimension at 
least two. By Lemma 1.2, every involution in q' has a four-dimensional 
double loop of fixed elements. Select an involution r in q' which is 
centralized by the factor q ' r  Thus, q~l leaves ~,o invariant. Because 
qJ1 is quasi-simple, it must either act trivially or with a zero-dimensio- 
nal kernel on f f ,  o. By Lemma 3.2 and [3], this implies that dim q~l ~< 
~< max {4, 6} = 6, which is a contradiction. 

c) d i m q  ~ = 12. Then A = ~ and F ~ = �9 is the product of two six- 
C 

dimensional quasi-simple groups qJ~ and qJz, for else W would contain 
a three-dimensional torus subgroup (note that W is linear), which is 
impossible by I-9, XI.9.6]. Moreover, by inequality (,) we have 
dim to = 6 = s and as mentioned above, F ~ acts transitively on 

C 

~ s -  1 ~. Since W is linear, we can apply the classification of transitive 
connected linear groups acting on GraBmann manifolds, see [25], e.g. 
By this classification, F~ x = qJ has to be a quasi-simple group, which 
again is a contradiction. 

We now turn to the general case where no restrictions on ~ r  are 
presumed. We start with a result about semi-simple groups. 

2.3. Proposition. I f  F is semi-simple, then dim F ~< 16. 
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Proof. The quot ient  F* := F/Z(F) is a semi-simple Lie group,  Z(F) 
is zero-dimensional,  and a maximal  compact  Lie group K* of F* is 
covered by a Lie group ~, which is contained in the universal covering 

of F*. In general, the group ~, need not  be compact .  So let (~ denote 
a maximal  compact  subgroup of K. 

Case 1. F is quasi-simple. Then (~ is a compact  semi-simple Lie 
group, which is projected onto  a compact  semi-simple Lie subgroup 
C of F with dim C = d im (~. Fur thermore ,  the inequality dim C = 
= dim (~ >~ dim ~ , -  1 = dim K* - 1 holds. If d im F* ~> 14 then dim K* >~ 
>1 6 by the classification of quasi-simple Lie groups, and thus the 
group F contains a compact  Lie group of dimension at least five. 
Consequently,  the group F contains commut ing  involutions and the 
assertion follows from L e m m a  1.2 and Proposi t ion 2.2. 

Case 2. F is semi-simple, but  not  quasi-simple. We write F as a 
product  F = O-W.A, where �9 and ~P are non-trivial quasi-simple 
groups and A is a (possibly trivial) semi-simple group. By (2.1) we have 
dim F < 0% and thus we may  assume that  �9 is a quasi-simple factor 
o f f  of maximal  dimension.  The group A can be written as the product  
of at most  two non-trivial semi-simple factors, because by L e m m a  2.1 
we have dim A ~< 8 (note that  dim O. W ~> 6 > 4). Fur thermore ,  we may  
assume that  d im � 9  6, since for dim cI) ~ 3 we would have dim F ~< 
~< 4.3 -- 12. N o w  (d  ~') - - 9  must  hold for all d e 9 \ ~ ,  because the 
quasi-simple group �9 acts on (d  ~') with a zero-dimensional  kernel, 
i.e. the factor �9 induces a six-dimensional group on (d~'), which is 
impossible by [3] and L e m m a  3.2 if d im (d  ~') = 4. So we have (d  ~) = 
= 9 .  Set A:--W.A. Since �9 commutes  with A and because of 
(d  | = 9 ,  the stabilizer A a mus t  be trivial. Consequently,  we have 
dim A ~ 8. N o w  assume that  d im F/> 17. This implies that  dim (I) >i 9. 
Applying L e m m a  2.1 to �9 and A, we conclude that  d im A = 3 and 
hence dim O~> 14. Finally, choose an element dEgk~A .  Then 
d i m ( d  A) >/4. If (d  A) = 9 ,  then dim (I)~< 8 (and hence dim F ~< 11), 
since A and �9 commute .  Finally, if d im (d  A) = 4, we obtain a contra-  
diction as before. 

2.4. Lemma.  A commutative group F is at most eight-dimensional. 
I f F  is an eight-dimensional commutative group, then it is isomorphic to 
~6 X "]]- 2. 
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Proof Let c e g \ ~ r .  Then d i m @  r )  7> 4. If (c r )  = 9 ,  then the 
stabilizer F c is trivial, because F is commutat ive.  Thus we have 
dim F ~ 8. Suppose that  dim F = 8. Then the group F acts sharply 
transitively on the complement  9 \ ~ - r .  Hence the group F is a Lie 
group, and the double loop 9 is a topological manifold (compare the 
proof  of Lemma  1.3). Being a connected commuta t ive  Lie group, the 
group F is isomorphic  to a product  E l x y8- i .  Thus  the homology  
groups H,(F)  of F vanish for n >~ 2. Applying Alexander duality to 9 
and ~ r  and noting that  F/Fc ,,~ c r =  9 \ o ~  r = ~ r .  holds by [3, 
(3.1)], this implies that  the cohomology  groups H"(~-r) vanish for 
0 ~< n ~< 5. In particular, the dimension of ~-r is at least six by Lemma 
3.1. So we have ~ r  -- 9 ,  because the dimension of a finite-dimensional 
locally compact  connected double loop is either 1, 2, 4, or 8, see [9, 
XI.8.5] and compare also [14]. But then we have F = ~, a contradiction. 
Thus we have dim F ~ 7 if (c r )  = 9 .  Now let dim (c r )  = 4 for every 
c e g \ o ~  r. Fix some element d e g \ Y r  and set 9 f : =  (d r ) .  Choose an 
element eeg\o~f. Since d i m ~ f  = 4, the group F d = FEg I operates 
freely on 9\og,r In particular, the stabilizer F d acts effectively on the 
four-dimensional  sub-double-loop (e r ) .  This implies that  d im F = 
-- d im d r + dim F d ~< 4 + 4 = 8, since the stabilizer Fd is at most  four- 
dimensional  by [3] and Lemma 3.2. Moreover,  if dim F -- 8, Lemma  
2.4 of [3] yields Fd ~ ~3 x T. Interchanging the roles of the elements 
d and e, the same is true for the stabilizer F e. Finally we have 
F = F d x F e ,  since F a n  F e = ~ and dim F d = dim F e -=- 4. This finishes 
our proof. 

2.5. Proposition. I f  dim Z(F) t> 1, then dim F ~< 16. 

Proof Let Z :=Z(F)  and choose an element c e g \ o ~  z. Since 
dim Z >/1, the sub-double-loop (c z) is of dimension at least four (see 
[9, XI.9.1., XI.9.3]). If (c z)  = 9 ,  the stabilizer F~ is trivial, which 
implies that  d im F - - d i m  cry< dim 9 - - 8 .  So we may  assume that  
~ : =  (c z)  is four-dimensional.  Then the stabilizer F~ acts freely on 
the complement  ~\~r since F~ = FI~ J. Thus we have dim F~ ~ 8 and 
the assertion dim F = dim c r + dim Fc ~< 8 + 8 = 16 follows. 

2.6. Theorem. The automorphism group F of a locally compact 
connected eight-dimensional double loop ~ is at most 16-dimensional. 

Proof By Proposi t ion (2.3) we may assume that  the group F 
contains a non-trivial connected commuta t ive  normal  subgroup E. If 
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E is compact, it is contained in the center of F and the assertion of 
the theorem follows by Proposition 2.5. So, for the remainder of the 
proof we may assume that E is not compact and hence is isomorphic 
to R t for some t > 0. Moreover, by Proposition 2.2, we may assume 
that d imout  = 0. Hence, by Lemma 1.3 we may select an element 
c e ~ \ o ~ r  with dim cry< 7. Choose a minimal F~-invariant subspace 
17 ~< E. Using the arguments of [21, (3.3)], we may assume that the 
stabilizer F c is a Lie group, since otherwise the dimension of (c r )  
would be four and then dim F ~< 12 by [3], because the group F leaves 
(c r )  invariant. Next, we may assume that E moves the element c, 
since in the other case the fix-double-loop o~. is four-dimensional by 
Lemma 3.3, and as before we conclude that dim F ~< 12, because F 
leaves ~-~_ invariant. 

In the following step we shall show that it suffices to consider the 
case where (c n )  r ~ .  Assume that (c n )  = @ holds. Then F~ acts 
effectively and irreducibly on the vector group H. Consequently, the 
group F~ is a linear Lie group with a radical of dimension at most 
two, see [8, 19.14, 19.17]. Now the assumption d i m F  >t 17 implies 
that dim F~ ~> 10, and therefore a Levi-complement Z of F~ is at least 
eight-dimensional. Being a linear semi-simple Lie group, E thus 
contains commuting involutions. Hence, we have dim F~< 16 by 
Lemma 1.2 and Proposition 2.2. So we may assume that (c n)  r N. 
For the rest of the proof we also suppose that dim F >/17. We shall 
distinguish two cases. 

Case 1. The element c is fixed by the vector group H. Then the 
fix-double-loop o~ n is four-dimensional by Lemma 3.3, since the 
element c is moved by the group E Set H * : = ( E n F a )  ~ Since F 1 is 

r  " C 

closed in F and the group 17 is contained in H* by assumption, we 
have 17" - ~s for some s > 0. Moreover, the fix-double-loop ~n* is 
four-dimensional by Lemma 3.3, since ~-n* ~ ~ .  The group 17" is a 
normal subgroup of F~, because E is normal in F. Thus the product 
EF ~ leaves the Baer double loop ~n* invariant and by Lemma 3.2 

c 

and [3] we obtain the inequality 

. - r , l  dim EF~ = dim EF 1 [ ~ n  ~ + dim d-" o ~< 4 + 7 = 11 

for some element d ~ c r \ ~ n  .. Using the (topological) isomorphism 
E F t / -  ~ - F~/Ec~F~ this yields the inequality 

dim F x = dim EF~ - dim = + dim(E c~ F~) ~< 11 - t + s. 
c 



On the Dimensions of Automorphism Groups 13 

Since dim F >~ 17 and dim c r ~< 7, we have dim F ~/> 10, and therefore 
c 

t -  s ~< 1 holds�9 If the orbit d-  generates ~ for some element d ~ c  r, 

then the stabilizer Ea is trivial and thus E~ = Ea, = (Ea) 6 = ~ for some 
automorphism 6 e F  satisfying dO= c. But this would contradict the 
fact that ~ r H ~< E~. Consequently, we have dim (d  n*) = 4 for every 
d ~ c r k ~ n  .. Furthermore,  the group 17" acts effectively on (dn*), 
because ~ is generated by ~n* and the element d. Since I-I* is 
isomorphic to R ~, this implies that s ~< 3 by [-3, (2.4)]�9 Thus we have 
t ~< 1 + s ~< 4. Let P denote a closed one-parameter subgroup of 17". 
Since dim ~n* = 4, we have ~ p  = ~n* by Lemma (3�9 Therefore, the 
centralizer (9:= CrP leaves ~r ,  invariant, and as before we infer that 
dim to ~< 11. Finally, considering the action of F on the space of all 
one-dimensional subspaces of E we obtain that 

dim F ~< dim to + dim E ~< 11 + 4 ~< 15 

which contradicts our assumption dim F ~> 17. 

Case 2. The element c is moved by the vector group 17. Then the 
double loop ~ f : =  (c n )  is four-dimensional. Since F 1 acts on H and 

c 

fixes the element c, it leaves ~ invariant. This implies that 

�9 F 1 
d i m F  1 = dim(F~)[g + dlmd c ~< 4 + 7 = 11 

c 

for some d~crk,~Uf. Let N ~< F 1 denote the kernel of the action of F 1 
c c 

on rI and set A:= F tg  ~. Then we have N ~< A. In the following we 
shall show that in fact N = A. For  this, we first verify that c ~ ~ c holds 
for all n~rI \{~ }. By Lemma 3.3, either c" # c or ~ = ~r holds for 
any n~FI\{~}. Consider the set H*:=  {n~Hl~ff ~ < ~ } .  Using the 
same arguments as in the proof of Proposition 2.2 we infer that H* = 
and hence e ~  c holds for all n~rI\{~}. Now we are able to prove 
the inclusion A ~ N. For  this, choose an element 2eA. Suppose that 
there is an element nEI-I with 2-1~2 r n. Then ~ :~ ,9:= 2 -  ~rc2n- ~ ~H, 
and from the preceding arguments we infer that c o ~ c. On the other 
hand, we have c o = c a- 1,~a~- ~ = e ~ -  1, and since 2eA and c ~ J r  ~, we 
conclude that c r e ~ = c ~ - '  = (c~) a ' -I  = (e~) ~-~ = e, which is a con- 
tradiction. This proves the equation N = A. 

Now, the quotient group F~/N = F ~ / A  acts effectively and 
irreducibly on 17, since H has been chosen to be minimal F~-invariant. 
By [-8, w w this implies that there is a semi-simple linear 
Lie group Z (possibly E = ~) such that E ~< F~/N ~< ZC • Thus either 
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Fc~/N ~< [~ or F~/N contains a torus subgroup.  In the second case, the 
involut ion o9 which is contained in the torus subgroup induces an 
involut ion ~ * : =  ogler on ~ (note that  N = A). By [3, (3.3)], we have 
1 ~< dim ~,o* ~< 2 and the desired inequality dim F ~< 16 follows from 
Proposi t ion (2.2). So it remains to study the case where F~/N ~< ~. In 
this case, however, we immediately obtain that  

d i m F  c~<dimN + 1 = d i m A  + 1 = d i m d  A+ 1 ~< 7 + 1 = 8 

for every element d ~ c r \ ~ ,  and thus we have 

dim F = dim c r + dim Fc ~< 7 + 8 = 15, 

which finishes the proof. 

3. Appendix 

3.1. Lemma.  Let @ be a locally compact connected double loop of 
arbitrary finite (covering) dimension n. Let U be a compact neiyhbor- 
hood in ~ .  Then the followin9 statements hold: 

(a) d im U = ind U = Ind  U = dim L U = n for every principal ideal 
domain L, where dim L denotes the cohomological dimension with 
coefficient domain L. 

(b) The relation d i m ( U  x X ) =  d i r~U + dim X holds for every, 
locally compact paracompact space X. 

Proof The first assertion follows from Theorem 15.7 of [5] and 
from the fact that  the covering dimension and the small and large 
inductive dimension coincide for a separable complete  metric space, 
see [-9, XI.1.2]. The second assertion follows from the equat ion 
dim U = dimzp ~ which holds for every prime number  p by part  (a), 
and from a theorem of Y. KODAMA in [-13, p. 400]. 

3.2. Lemma.  Let @ be a locally compact connected double loop of 
arbitrary finite dimension n. Let ~ be a closed sub-double-loop of 
which is invariant under a locally compact automorphism 9roup F of ~ .  
The kernel of the action ofF on ~ is denoted by A. Then the quotient 
9roup A = F/A of F is a topological transformation 9roup on ~ with 
respect to the quotient topology "co, and dim(A, zQ) = dim(A, "coo), where 
�9 coo denotes the compact-open topology on A with respect to the action 
of A on,Yr. 
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Proof Let q~ :.r • F ~ ~ '  be the evaluation mapping. Since ~ is 
locally compact, the compact-open topology on A is the coarsest 
topology such that the mapping q) is continuous. Thus the topology 
zQ on A is finer than the topology Zoo, since the group (A, zQ) evidently 
is a topological transformation group on  ~ .  But his means that the 
identity mapping id:(A, Lo) ~ (A, zQ) is continuous. Since F is locally 
compact by [2], we may select a compact neighborhood U of the 
identity ~ in (A, Lo). The restriction idl u:(U, Lo)~(U,  z~) is a homeo- 
morphism. Hence we conclude that 

dim(A,Lo) = ind(A, Lo) = ind(U, Lo) = ind(U, zQ) = 
= ind(A, zQ) = dim(A, zQ), 

and the lemma is proved. 

3.3. Lemma. If ~ r �9 ~_ F is a connected normal subgroup, then 
~,~ = ~ r  or ~,~ is four-dimensionaL If 1 -r ~rF and dim C >~ 1, where 
C:= (Cry) x, then ~ = ~ c  or ~ is four-dimensional. 

Proof Since q) is a normal subgroup ofF,  the fix-double-loop ._@,~ 
is F-invariant. If ~ # ~r ,  then F acts non-trivially on ~,~. Because 
the group F is connected, this implies that dim ~-~ >/4 and thus ~,~ 
is four-dimensional. Similarly, the connected group C acts on ~'~ and 
the claim follows as before. 
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