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Abstract. Let 7" be an eight-dimensional, connected, locally compact ternary field and let F denote 
a connected closed Lie subgroup of its automorphism group which is taken with the compact-open 
topology. It is proved that if the ternary fixed field .Tr of F is connected, then P is either isomorphic 
to one of the compact Lie groups G2 or SUaC, or the (covering) dimension of I ~ is at most 7. 
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This paper continues the study of  automorphism groups F of  eight-dimensional 
locally compact  connected ternary fields T in the sense of  [14] and [3]. Throughout 
the paper we shall assume that F is a closed subgroup of  the (locally compact) auto- 
morphism group of  T.  We shall work with the following definition of  a topological 
temary field, compare [16, 7.2]. 

(1) DEFINITION. A ternary f ield 7" = (T ,  0, 1, 7-) consists of  a set T containing 
the two distinct elements 0 and I and a temary operation 7-: T 3 ~ T: (8, z,  t) 
7-(8, z,  t) which satisfies the following axioms: 

(T1) 7-(0, x, t) = 7-(x, 0, t) = t andT-(8, 1, 0) = 7-(1, 8, 0) = 8 for all 
8, x,  t c T .  

(T2) For any elements 8, x, y E T there exists a unique element t = t ( s ,  x,  y) 
in T such that 7-(8, x, t) = y. 

(T3) For any elements s t ,  82, t l ,  t2 C T with Sl ~ 82 there exist unique elements 
x = x(81, t l ,  ~2, t2) and8 = s(81, t l ,  82, t 2 ) i n T s u c h t h a t T - ( s i ,  x,  ti) = y 
and 7-(s, 81, t) = tl holds for some y, t E T a n d i  = 1, 2. 

A temary field T is called topological if T is provided with a topology being 
neither discrete nor indiscrete such that the map 7- and its inverse mappings t, x 
and s are continuous. 

Using the terminology and notation of  [3] the main results of  the articles men- 
tioned above are collected in the following 

(2) THEOREM.  The fo l lowing conclusions hoM: 

(a) dim F G 14. 
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( b ) / f F  is a compact group, it is either isomorphic to one of  the groups G2, SU3C 
or SOak, or the inequalities dim I" < 3, dim P <_ 7 and even dim P < 4 i f  
P is a Lie group, hold. 

(c) The group P is compact or dim F ___ 11. 
(d) I f  the ternary fixed field ~p  is connected, then F is a compact group or 

dim F < 10. 
(e) A semi-simple, non-compact group F is at most ten-dimensional. 

(f) A commutative group F is at most seven-dimensional. 

We investigate the possible dimensions of the automorphism group F in the case 
where F is a Lie group and its ternary fixed field Ur is connected. The main result 
we shall prove is the alternative: 'Either the group F is compact or its dimension is 
at most seven.' We shall start with a result on compact subgroups of F in the case 
where P is not compact. 

(3) LEMMA. Let K be a maximal compact subgroup of  P, where F is a non-compact 
connected Lie group. Then K is isomorphic to either Spin3I~ or the circle group T, 
o r K =  1. 

Proof  Since F is not compact, it cannot contain commuting involutions by 
[14, 2.3]. Thus the dimension of a maximal toms subgroup of F is at most 1. A 
compact connected Lie group of toms rank at most 1 is either isomorphic to one 
of the groups Spin3~, SO3~ or the circle group T, or it is the trivial group. But 
the group SO3~ does contain commuting involutions. Every maximal compact 
subgroup of a connnected Lie group is connected by the theorem of Malcev- 
Iwasawa [7]. Hence K is isomorphic to one of the groups stated in the lemma. 

Let E denote the smallest closed ternary subfield of T. The next lemma shows that 
in proving the aforementioned alternative we may restrict our attention to the case 
where f r  = g. Note that this lemma does not presume F to be a Lie group. The 
set ~ := {x E T i t ( x ,  x, 1) = 0} is nonempty, compact and F-invariant by 
[4, XI.8.11], see also [3, 2.2]. 

(4) LEMMA. If  dim $'r > 0 then one of  the following statements holds: 

(1) The group F is compact. 
(2) dim P < 7. 
(3) dim ~ r  = 1 and dim(e) = 4 for  all c E ~/-L--i ". 

Proof. By [9], we have dim .T'r = 2 m with 0 <_ m <_ 3. We may assume that 
dim ~'r = 1. Otherwise the assertion follows from [3, 3.1] and [3, 3.2]. So we may 
choose an element c E x/Z]-k~'r by [3, 2.2]. If (c) = T then dim I' = dim c r < 7 
by [3, 2.3]. Thus we may suppose that dim(c) = 2 in view of statement (3) of 
the lemma. Furthermore, we may assume by Proposition [3, 3.3] that the group 
P is semi-simple. We shall show that F is in fact a simple Lie group. For this 
purpose, we prove that the center Z of P is trivial. Suppose that 7 ~ 1. Then 
either dim ~'Z = 4 or ~'Z = f P  holds by [2, (3.3)]. In the first case we conclude 
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that the group F is either compact or at most seven-dimensional by [3, 3.4] and 
[14, §2, (2)]. So let 3rZ = ~ r  and choose an element ( E Z\I .  As before there are 
two cases, namely dim .T( = 4 or .Y'¢ = ~ r ,  and as before we may restrict our 
attention to the second case. Thus we have ~ (  = -~'Z = ~ r  for every C E Z \ I .  If 

(c z) = T,  then the stabilizer Fc is trivial and dim F = dim c r _< 7 follows from 

[3, 2.3]. If dim(c Z) = 4, then the group F is compact by [14, 2.2], since we have 

the situation C ~, (c) < (c Z) < 7". Thus the only remaining case is (c Z) = (c). 
But then the center Z acts effectively on the two-dimensional ternary subfield (c), 
since ~¢ = ~ r  for every ~ E Z\  1. This implies that the center contains at most two 
elements, see [4, XI.9.3]. Since F is finite-dimensional by Theorem (2), this implies 
that F is a Lie group. Moreover, F cannot contain a quasi-simple factor isomorphic 
to the universal covering of SL211~, since IZl _< 2 holds. In particular, the group 
F must be quasi-simple, because otherwise it would contain a two-dimensional 
torus subgroup and thus would be compact by [14, 2.3]. Finally, if IZI = 2 then 
the group F contains a central involution w which has a Baer ternary fixed field. 
But this is impossible, since for a quasi-simple group of dimension at least 6 we 
have ~ r  = ~o~, see [1, (2.7)]. Thus we have shown that F is a simple Lie group. 
Now, the classification of quasi-simple Lie groups shows that a simple Lie group 
of dimension at least 8 always contains commuting involutions. This implies that 
either the group F is compact by [14, 2.3] or dim F _< 7 holds. 

The preceding lemma shows that for proving the inequality dim I? _< 7 in the case 
of a non-compact Lie group F we may assume that dim ~ r  = 1 and dim(c) = 4 
for every c E 7"\~. These assumptions are always taken for granted for the rest of 
this paper. 

We introduce the following notations. For any element c E 7" set 7-(c := (c). 
The set V := {c E 7"1 dim(c) = 4} is regarded as a topological subspace of 7" 
taken with the relative topology rv. Set B := {7-/el c E V} and let 7-(* := 7-/N V 
for a ternary subfield 7-/< 7". Finally, the relative topology of the subset ~ in 
7- is denoted by rye: T. We use the abbreviation Cs to denote a centralizer. By the 
symbol ~ we denote a homeomorphy. 

The main idea for estimating the upper bound for the dimension of F is the 
detailed study of the action of F on the set B. We shall show that B can be 
topologized in such a way that B becomes a compact analytical manifold which 
is homeomorphic to some quotient space A4 of I?. Thus, the group F acts on B as 
a topological transformation group. This fact will provide additional information 
about the structure of the group F. The main tool for this procedure is the following 
rather technical lemma. 

(5) LEMMA. Let F be a non-compact Lie group. Suppose that the following 
conditions are satisfied: 

(I) J - : - f  C_ V, 

(II) for every c E ~; the stabilizer rc contains a unique involution, 
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(III) there is an involution w E r such that dim I'/Cs(co) >_ 4, 
(IV) I" acts transitively on 13. 

Then the quotient space .A4 :-- r / c s ( w )  is a compact four-dimensional analytical 
manifold with respect to the quotient topology r. Moreover, Cs(w) = r[~-] holds. 

Proof From condition (I) we can easily deduce the following assertion 
(V) If 7- /E/3 a n d / , / <  7-/, t h e n / , / =  £. 
To prove this, let/,/ < 7-[ E B. If L / #  g, then d i m / , / =  2 and/,/C/x/'-Z1 # 0 

because of £ ~-, IR, see [4, XI.8.11]. But for each element c E/,/fq ~ we have 
(c) = / , / w h i c h  contradicts condition (I). 

I fT / i s  an arbitrary Baer ternary subfield and ifc E 7~*, then ~ = (c), otherwise 
we would have a tower of ternary subfields C g (c) < ~ < T and the group would 
be compact by [14]. Hence we have 

(VI) Every element c E 7-/* of a Baer ternary subfield 7-[ generates 7-[ and 

The proof of the lemma is divided into five steps. In the first step we shall define 
four topologies 7"1 , . . . ,  7"4 on the set B, where each of these topologies has certain 
properties, which can easily be verified. In particular, it will be obvious that (B, 7-4) 
is homeomorphic to M .  In steps (2) and (3) we shall verify that the topologies 
7"1, 7-2, and 7"4 coincide with the quotient topology 7- on 3,4. This yields three 
different descriptions of the topology 7- on 34. Step (3) also yields the assertion 
that 34 is four-dimensional. In the last step we shall prove that the (Hausdorf0 
compact topology 7"3 is finer than the Hausdorff topology 7-. In particular, this shows 
the compactness of (B, 7"4) ~ 34.  

STEP (1). Definition of the topologies 7-1, • • •, 7"4. 
The topology 7-1. 
Let 7-1 be the quotient topology of (V, 7-v) with respect to the map 

~1: V --~ B : C  v--+ "]-/e- 

Assertion (V) implies that qo[-(O) = UT~eo 7-/* for every subset 0 C B. Hence 
we have 

O E T-l iff l.J ~*  E T-v. 
7-lEO 

Since I' induces a topological transformation group on V and because qol is con- 
tinuous by construction, r is a topological transformation group on (/3, 7"1). Thus, 
the topological space (B, 7"1) is homogeneous by condition (IV). 

The topology 7"2. It is easily seen that by 

O E T"2: C==~ 3U E T"v : ( ~  E O q--4. 7~ 71U ¢ O) 

a topology 7"z on B is defined. A set O is open with respect to 7"2 iff it can be written 
in the form {7-/E BIT~ N U # 0} for some open subset U E 7"v. 
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The topology r3. Consider the mapping 

~3 :  v/-2-i- ~ t~ : c ~ 7/~.  

For every element c E ~/Z-f there is some Baer ternary subfield 7 / E / 3  with c E 7¢ 
(namely 7/ = 7/~) by condition (I). Since we have C Cl ~ = (~ (see [3, 2.2]), 
condition (V) states that the Baer ternary subfield 7/c is uniquely determined by 
the element c. Thus the map ~3 is well defined. Since every ternary subfield 7 / E  B 
meets the set v/-S-f [4, XI.8.11], the map ~P3 is surjective. Hence we may define 73 
to be the final topology of (VcL-] -, r,/zT) with respect to ~3. Thus we have 

o c = U n v'cf)  
7.-/EO 

Being a continuous image of the compact set x/Z-i ", the space (B, r3) is compact 
(not, necessarily Hausdorff). As in the case of the definition of the topology rl,  the 
group F is a topological transformation group on (B, 7-3) and thus by condition (IV) 
the space (B, r3) is homogeneous. 

The topology 7"4. Let w E F be an involution which satisfies condition (III). 
Consider the mapping 

~t~4: ln/Cs(03) --+ ~" (Cs((,o))"/~-+ ~w.  

In order to verify that the map ~4 is well defined and injective we prove 

An automorphism 7 E F leaves f',, invariant i f f7  E Cs(a~) ( . )  

Obviously, every element ? E Cs(~o) leaves U~o invariant. Conversely, let 7 E F 
with 5c'~ = 5c~. By (VI) there is an element c E ~-,o with 5c~o = (e). Then, by (VI), 
we have (c) = ~'~ = ~ = (c "~) and this implies that Pc = Fc-~. If a~ 7 ~ 7co, 
then w I = w "y would be an involution with ternary fixed field ~o, ~ .T'w, since the 
stabilizer I'c contains a single involution by condition (II). As before, there is some 

element a E T which generates .T'~o,. Now we have a ~-~° = a "Y-l, because the 

element a is fixed by the involution aY. Thus the element a "/-~ is contained in ~'~o and 
we infer that a = (a "y-1 )'Y E ~ = ~'~o. Consequently, we have a E 5c~ N 5c~,. On 
the other hand 5c~o Cl 5c~, = £ holds by condition (V). But this is impossible, since 
the element a generates 5c~,, ~ C. This contradiction shows that the automorphisms 
a~ and 7 commute and ( . )  is verified. 

In particular, assertion ( . )  proves the equation Cs(w) = r[y~]. Since the map 
~4 is a surjection by condition (IV), we may define r,t to be the topology on B with 
respect to which ¢o 4 becomes a homeomorphism between I'/Cs(a~) a,ad (B, 7-4). 

STEP (2). The topologies 7"1 and 72 coincide. 
Let O E 71. Then we have / , / :=  U ~ e o  7[* E 7"v by definition of the topology 

7"1. Condition (V) implies that this union is a disjoint union. Hence a Baer ternary 
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subfield 7-/is contained in (9 if and only if the intersection ~ M L/is nonempty, and 
we infer that O E 7-2. Thus the topology 7-2 is finer than the topology 7"1. To prove 
the converse, select an element O 6 7"2. By definition of 7"2 there is a set L /6  7"v 
such that O = {7-/ C BIT-/t3 L/ # 0}. Suppose that the set O is not open with 
respect to the topology 7"1. Then ,12 := U u c o  7-[* c_ P is not open with respect to 
the topology 7"v. Thus we may choose an element c C 2" N 02". Set 3; := ~;\2". 
Since the tenary field 7- has a countable base (see [4, XI.1.2, XI.2.2]), there is a 
sequence (cn)ne~ in y converging to c and so dim@n) = dim 7-/c,~ = 4 holds for 
every n 6 N. Consider the set 

dl := {a 6 7-/~l[Vn 6 N3an 6 7-:an 6 7-/~.] and lim an = a}. 
n - . ~ o o  

Then .,4 is a (not necessarily closed) ternary subfield of 7-/~. To prove this, choose 
elements Sn, tn, un, vn 6 7-[c, with 

lim s n : s ,  lim t n : t ,  lim U n = U ,  lim Vn=V,  
n ""+ OO n---+ OO n - - +  (X) n - - -+oo  

where s, t, u, v 6 ~c.  Then we have 

7"(s, u, t ) :  r(.n__.oolim s~, n.oolim u,~, n--.oolim t ~ ) :  n--.oolim 7-(sn, un, tn) 

which implies that 7"(s, u, t) 6 .A. Similar, we are able to deduce from 

t(s,  u, v ) :  t ( l i r a  Sn, ~--.~lim u~, ,~--.~lim V n ) :  ~--+oolim t(Sn, u~, v~) 

the relation t(8, u, v) 6 .A. The verification of the last axiom (T3) of a ternary 
field is done in much the same way; given two distinct elements s, s t 6 .A, we 

t only have to choose sequences (sn) and (Jn) with Sn, s n G 7-Ion which converge 
t holds for every n 6 1% This can be to s and s t, respectively, such that Sn # sn 

achieved by passing to appropriate subsequences. 
Since c G .4, the closure (.A) of .4 in 7- is just 7-/c, i.e..A is dense in 7-/c. 

Because the intersection U N 7-/~ is open in 7-/c, there is an element d 6 .,4 f3 b/. 
By the very definition of ,4 there is a sequence (dn)n~r~ in 1; with dn 6 7-[cn and 
lim~__.~ d,~ = d. Thus there is an integer m G N with dm G L/and we infer that 
7-(d,~ 6 0 .  In particular, we have dm C 2,. But this is impossible by the relations 
(din) = 7-/cm and 7-/~ m fl 2, = ~. Consequently, this contradiction shows that the set 
O is open with respect to the topology 71. Hence the topologies 7"1 and 7"2 coincide. 
Moreover, this shows that ~1 is an open map (use [8, Th. 10, p. 97], e.g.). 

STEP (3). The topologies 7"2 and 7"4 coincide. 
Let w be an involution in the sense of (III) and consider the following diagram 
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4 991 
× r . v . (/3, 7-2) 

1 
r T] , ./~ ~ 4  (B, 7"4) 

where 4 = ((c, 7) ~ c'~) denotes the action of r on .T~, ( is the projection onto 
the second factor, and r/is the canonical epimorphism from I? onto .M = I'/Cs(w). 
This diagram is commutative, since for all pairs (c, 7) C .T~* × F we have 7-/~ = .T~ 
which implies that 

(c, 7)4991 idt~ = (c7)~1 = 7"~c7 : "]-/c q' : 

and 

(C, 7)C7~994 = 7T]994---- ( (Cs (~ ) )~ ' )~  4 --- ~w 

hold. By construction, 

(1) the mappings 991, 4,  ( ,  q, and 994 are continuous, mad 
(2) the mappings ( ,  z], 994, and 991 (note that T1 = 7-2) are open. 

Note that the set 5r~ x F is taken with the product topology. 

The commutativity of the diagram implies that the identity map id6 is open 
-by properties (1) and (2), i.e. the topology 7"4 is finer than 7-2. To verify that the 
topology ~-4 is coarser than the topology 7-2, we have to do some further preparation. 
Note first that the product 5 r* x F is locally compact with respect to the product 
topology, since F and 5r~ are locally compact and ~'~* = .T~\E is open in 9r~. Thus 
there is a nonempty, open, relative compact set }IV x ~ in .)r* x F. Set C : = k~; x ~. 
Because C is compact, the restriction 4 r of 4 to the set C is a closed mapping. 
Moreover, the set ~'* × F has a countable base, since 1 ~ is a Lie group. So we may 
apply [13, 9.2.6] to 4 r and by [2, 3.1] we obtain that 

dim(Sr~ x F) = dim(~* x 1 ~) = dim C _< dim ¢ '  + dim C4 ' ,  

where dim 4 '  = sup{dim(4'*--(y))]y E V}. By [2, (3.1)] this implies that 

dim C4' >_ d i m ( ~  × F) - dim 4 '  = 4 + dim P - dim 4 ~. 

For every element y C 1; we have 

s y  :=  = {(c,  7 )  e c I c  = v ) .  
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We shall show that the restriction (I := (Is~:Sy -~ Sy(  C_ F is a homeomorphism. 
Being a projection, the map ( is continuous and open. So we only have to prove that 
(~ is inje.ctive. For this, choose elements (cl, 71), (c2, 72) E Sy with (Cl, 71)( ~-- 
(c2, 72)( I = /f. Then 71 = 72 = /f and Cl 6 = c2 ~. Since 6 is an automorphism of 
the ternary field T,  this implies that cl = c2, i.e., (i is an injection. Thus for every 
element y C C ¢  t c_ 1) we have 

dim Ct~- (y)=  dim Sy = dim Sy( I. 

Next, we want to prove that 

dim Sv( I <_ dim Cs(~). 

In order to derive this inequality, let 7 E Sy(  ~. Then there is some element c E 
kV c_ ~ such that c "r = y. Hence we have by (VI) that 

for every automorphism 7 E Sy( I. Since by condition (IV) the group F acts 
transitively on the set B, there is some t5 E 1 ~ such that 

4 6 = 

holds for all 7 E Su( t. By assertion ( . )  of Step (1) this implies the inclusion 

(Sy¢t)8 c Cs(~). 

Because Sy ~ Sy( I ~ Sy(qf is compact and thus is closed by the continuity of 
the map Ct, we may apply the sum theorem (see [13, 3.2.5], e.g.) and obtain the 
desired inequality 

dim Sy( I = dim Sy(l~ <_ dim Cs(w). 

Since this holds for every element y in C ¢  I C_ V, we infer that 

dim ~b t = sup{dim(~bl~(y))[y E ~2} _< dim Cs(w). 

Substituting this result in ((>) we obtain by condition (III) that 

dim C ¢  ~ _> dim F - dim Cs(aJ) + 4 = dim .M + 4 _> 8. 

Because C ¢  = C~b I _ T is compact, we have dim C ¢  = 8 by the sum theorem 
and thus 

dim .M = dim T - dim Cs(~) = 4. 
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Moreover, dim C~/, = 8 implies that the set C¢contains inner points (see [1, (3.1)]). 
Now we are able to prove that the topology 7"2 = 7-1 is finer than the topology 

7-4. Since the spaces (/3, T1) and (B, 7-4) are homogeneous, it suffices to consider 
neighborhoods of ~'~. So let/2 E 7"4 be a neighborhood of Uw. Because the map 
~/']~4 is continuous and Or-, x I' is locally compact, there exists a relatively compact 
and open set }42 x f~ C 5 r* x F with 1 E f~ satisfying 

('W X ~)~"r]~4 C Z,,[. 

Furthermore, let 19 be a relatively compact open neighborhood of I E F such that 
1919-1 is contained in fL As proved above, the set O := (()V x O)~b) ° = (~V°) ° 
is nonempty. Hence we may choose an element (e, 7) E W × ® with c "r E O. 
Then we have 

= E 0 " - '  c_ ( ( W e ) ° )  e - '  = ( W e e - ' )  `' C_ ° =: 0 ' .  

By definition of the topology 7"1 this means that .T'~, = (c) E O'~pl. Hence 

c_ ( W  x = (W x c_ u 

follows. The set O~qol C_/2 is an open neighborhood of.T~o with respect to (13, 7"1 ) = 
(13, 7"2), because O ~ is an open set and £Pl is an open map. Thus we have verified 
that the topology 7"2 is finer than T4. 

STEP (4). The topology 7"3 is finer than the topology 7"1. 
Let O E 7"1. By definition of the topology 7-1 we have U ~ o  7-/* E 7-v. By 

condition (I) the relation 7-,/'z-f = {b/fq VrL--]-IL/ E 7"v} holds. Combining both 
results, we obtain that 

7-/E 7-/EO 

Thus, the set O is open with respect to T3, which proves that 7-3 is finer than 7-1. 

STEP (5). (.A4, 7-) is a compact analytical manifold. 
By steps (2), (3) and (4), we have the relations 

7 " 4 = 7 - 2 = 7 " 1 - ' < 1 - 3  . 

Being a continuous image of the compact space (v/-L-] -, 7-V-sf), the space (/3, 73) 
is quasi-compact. In particular, (13, 7"4) ~ .A4 is quasi-compact because of 7"4 = 
7"1 -'< 73. But since F is a Lie group, the quotient A4 = £/Cs(w) is an analytical 
manifold. Thus, all claims of the lemma are verified. 

If F is a non-compact Lie group of dimension at least 8, condition (I) of Lemma (5) 
is satisfied by Theorem (4). The next lemma shows that in this case conditions (II) 
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and (IV) are also satisfied. 

(6) LEMMA. Let F be a non-compact Lie group with dim F _> 8. Then F acts 
transitively on the set 13 of  all Baer ternary subfields of  7-. Moreover, for  every 
element c E V the stabilizer Fc is isomorphic either to Spin3~ or to a circle group. 

Proof  Choose an element c E ~. Since the ternary subfield 7-/c is four- 
dimensional, the stabilizer Fc is a compact Lie group [14, (2.3)]. According to 
Lemma (3), the subgroup F~ is isomorphic to one of the groups 1, 7 (circle group), 
or Spin3~. The ternary subfield ~c  is generated by any element d of 7-/c\C (cf. (VI) 
in the proofofLemma (5)). This implies that Pc = Fd for every d E 7-/c\C. Because 
of 7-/c M v / s T  # 0 we may choose the element c in v/-L-1 -. Applying [3, 2.3] we 
obtain that dim c r <_ 7. Since dim P >_ 8, this implies that dim Fc _> 1 and thus 
P~ is isomorphic to either the circle group 7 or to Spin3~. 

Now let K be a maximal compact subgroup of F such that Fc _< K. Again, by 
Lemma(3), we know that K is a subgroup of Spin3~. Thus, if dim Fc = dim K then 
F~ = K. If, on the other hand, the identity component F~ of the stabilizer Fc is a 
circle group and K - Spin3~, we consider the unique involution ~ of K. Therefore 
a; C I~c and K~ = .T~ = 7-/c. Hence the compact group K acts on 7-/c = ~o~ and the 
stabilizer F~ is contained in the kernel of this action. Consequently, the group K 
acts trivially on 7-/c, because K is quasi-simple. But this contradicts the assumption 
that I?~ < K. In particular, the stabilizer F~ is always a maximal compact subgroup 
of F and thus is connected. 

For a verification of the transitivity statement let 7-/~, 7-/d E 13. By what we 
have proved above, the stabilizers Fc and Fd are maximal compact subgroups 
of F and thus are conjugated in F. So there is an element a E F such that 
P~ = Pd. From P~ = F ~  = Fd we infer that (c a) = (d) which implies that 
7-/~ = (e) ~ = (c a) = (d) = 7-/a. This proves that the group F acts transitively on 
the set 13. 

Using the preceding lemma we are able to prove: 

(7) THEOREM. I fF  is a non-compact, semi-simple Lie group, then dim F _< 6. 
Proof  By [3, 3.5] we have dim F _< 10. First let dim F >_ 8. A maximal 

compact subgroup K of F must be isomorphic to a closed subgroup of Spin3~ by 
Lemma (3). We shall study the dimensions 8, 9, and 10 separately. 

CASE 1. dim F = 10. A 10-dimensional semi-simple Lie group F is quasi- 
simple by the classification of quasi-simple Lie groups, and P is locally isomorphic 
to one of the groups SOs,i~ with 0 < i < 2, see [17], for instance. By Lemma (3), 
this implies that K ~ Spin3~ and F must be isomorphic to the universal covering 
of the group SO5,2I~. But this group contains a central involution w and thus F acts 
on the Baer ternary fixed field ~ .  Since F is a quasi-simple group of dimension 
greater than 4, the group F must fix the Baer ternary subfield .T'~ pointwise, see [1] 
and [2, (3.3)]. This, however, is a contradiction to [3, 3.1]. 
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CASE 2. dim F = 9. Since there are no nine-dimensional quasi-simple Lie 
groups (see again [17]), the group F in this case consists of at least two quasi- 
simple factors. Since K _< Spin3~, one of these factors must have a trivial maximal 
compact subgroup and hence must be isomorphic to the universal covering ~2 of 
the group SL2~. Because the center of f~ is infinite cyclic and is contained in the 
center Z of F, we have IZI = c~. Choose an element c E T such that c Z ~ c. By 

[4, XI.9.3] and [2, (3.3)] the ternary subfield 7-/:= (c Z) is at least four-dimensional. 
Consequently, the stabilizer Pc = F[n] is compact by [14, 2.3]. Since dim F = 9 
we have dim Fc _> 1, and thus K ~ 1. On the other hand, only one factor • of F 
can have a non-trivial maximal subgroup. Thus we have the following subcases. 

(a) F = f ~ .  Then • ---- SL2C, for otherwise the group F would contain 
commuting involutions and thus would be compact by [14, 2.3]. Let ca denote 
the central involution of SL2C. As before, we infer that ~ must fix the ternary 
subfield .T~ pointwise, since • is a six-dimensional quasi-simple group. Again, 
this contradicts [14, 2.3], because the group SL2C is not compact. 

(b) F = f~lf~2ff, where f~l = f~ = f~2. Since the subgroup ~ contains a 
non-trivial maximal compact subgroup, there exists an involution w in ~. Because 
the factors of F commute pairwise, the involution ca possesses a centralizer ® 
in ~, of dimension at least 7, and the factors f~l and f~2 are contained in O. The 
centralizer O leaves the ternary subfield .T~ invariant and the kernel of this action is 
compact. Thus, the six-dimensional group f~1~22 must act effectively on .To~ which 
contradicts the results of [1] and [2] or [15]. 

CASE 3. dim I? = 8. As in Case 1, the group F is quasi-simple. Since K _< 
Spin3~, the group F is isomorphic to the universal covering of SL3~ or of SU3,1 C, 
see [17]. But the group F cannot be isomorphic to the universal covering of 
SL3~, since this group contains a central involution ca. As above this yields a 
contradiction, for F would fix .T~. So it remains to exclude the case that F is 
isomorphic to the universal covering of SU3,1C. For this, we shall apply Lemma (5). 
By Lemma (4) and Lemma (6) it suffices to verify condition (III) of Lemma (5). The 
centralizer O of an involution ca in F is isomorphic to the universal coveting of U2C. 
Consequently, this implies that dim A / / =  dim F /O = 4, because the group U2C is 
four-dimensional. Hence, condition (III) is satisfied and by Lemma (5) the quotient 
P /O  is compact. The group F = SU3,1C is simply connected and the centralizer O 
is connected. Thus the quotient F /O is also simply connected. This fact follows, 
for example, from the long exact sequence in homotopy which is induced by the 
short exact sequence 1 --+ ® ~ F ~ F /O  --+ I. An alternate proof can be found 
in [11, Ch. 2, §8, Cor. 1]. Clearly, the natural action o f f  on F /® is transitive. By 
[10, Ch. V, Th. (5.6)], a maximal compact subgroup of F must also act transitively 
on F/O,  since this quotient is a simply connected compact manifold. But this is 
impossible, because a maximal compact subgroup of F is three-dimensional and 
therefore cannot act transitively on a four-dimensional space. 
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Altogether, we have shown that dim F < 7. Since no seven-dimensional semi- 
simple Lie groups exist, the assertion of the theorem follows. 

For the final estimation of the upper bound of dim E we need two more results 
which will be used later to ensure that we can apply Lemma (5). 

(8) LEMMA. Let E be a non-compact Lie group of  dimension at least 8 and let 
c C 1;. Then the stabilizer Fc is isomorphic to the group Spin3~ or there exists an 
involution ~ E F such that dim I ' /Cs(~)  = 4. 

Proof. Suppose that the stabilizer F~ is not isomorphic to Spin3~. Then we have 
I?c ~ T by Lemma (6). Moreover, the stabilizer Pc is a maximal compact subgroup 
of F. Let w be the unique involution of F~ and set M := F/Cs(w). Suppose that 
dim .M _< 3. Then dim Cs(~) > 5 holds. Because the centralizer Cs(~) acts on 
the Baer ternary subfield ~'w with a compact kernel and since the maximal compact 
subgroup of Fc is a one-dimensional circle group, the centralizer Cs(~) induces on 
5t'~ a group of dimension at least 4 (note that Fc ~- 7), see [1, (3.2)]. But since ~'r 
is connected, this contradicts [15, §2, (9)]. 

(9) LEMMA. Let F be a locally compact group containing an involution w. Let 
and ~ be closed subgroups o f f  such that • ~_ • and w ¢ Cs(~) fq Np~. I f  a 

maximal compact subgroup of  ~ is trivial and if  w acts trivially on ql / q~, then the 
group • is contained in Cs(~). 

Proof. Let ~b E k~\~. Then ~b~ = ~bw~, i.e. there is some element qo ¢ ~ such 
that ~b ~° = ~b~. This implies that 

and thus qo 2 = 1. In particular, the element ~o lies in a maximal compact subgroup 
K of • (which exists because • is locally compact). But by assumption we have 
K = I and so ~o = 1. Hence ~b ~' = ~b, i.e. ~b E Cs(w). 

(10) THEOREM. Let F be a Lie group. I f  the ternary fixed field UP is connected, 
then the group r is compact or at most seven-dimensional. 

Proof. Let r be a non-compact Lie group. Suppose that dim F _> 8. Then r 
is not semi-simple and a Levi complement P, of P is of dimension at most 6, see 
Theorem (7). To obtain a contradiction, we shall apply Lemma (5). By (4) and (6), 
we only have to verify condition (III) of  Lemma (5). For this we may assume by 
Lemma (8) that a Levi complement P~ contains a subgroup isomorphic to Spin31R. 
Let K denote a maximal compact subgroup of P. Then the group K contains a 
subgroup isomorphic to Spin31R, too. But, on the other hand, the group K cannot 
contain commuting involutions by [14, 2.3] which implies that K ~ Spin31R. Let w 
denote the central involution of K. The group K acts trivially on the ternary fixed 
field U~o, else K would induce a non-trivial compact group on 5~,; by [5, (15)], and 
r would thus be compact by [14, 2.3]. Since K is a closed quasi-simple subgroup 
of P, we may choose the Levi-Complement P, in such a way that K is contained 
in P,, see [18, 3.18.13]. Since I' is not semi-simple, there is a minimal connected 
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commutative normal subgroup E in F. The subgroup E cannot be compact, since 
otherwise E would be a central subgroup of K which is impossible because K is 
semi-simple. Thus, the normal subgroup E is isomorphic to a vector group ~ .  
Let A denote the solvable radical of F. By the theorem of Malcev-Iwasawa [7] 
the group F is simply connected, because the maximal compact subgroup K is 
simply connected. Consequently, by the Levi decomposition of simply connected 
groups, we have ~ f) A = 1, see [18, Lemma 3.18.4]. By Theorem (7), the possible 
dimensions of ~ are 3 and 6. In the sequel we set • := Cs(w) and .M := F / ~ .  

CASE 1. dim E = 6. Since the maximal compact subgroup K of ~ is isomorphic 
to Spin3~, the group Z is isomorphic either to Spin3C or to a direct product of 
Spin3~ and the universal covering f~ of SL2~ (note that this product is direct, since 
the centers of the factors are Z2 and Z respectively and thus no identification of 
central elements can occur). In both cases the involution ~ is central in E. Thus 
the group E acts on 2",o. Since the compact kernel of this action contains K, the 
group E cannot be quasi-compact. In particular, the group ~ cannot be isomorphic 
to Spin3C. By [15, §2, (9)], [5, (15)], and [3, 3.1] we conclude that dim k9 < 6, 
which implies that q/1 = E. In particular, the involution aJ acts non-trivially on 
the normal subgroup E. Since (w) is the center of the quasi-simple group K, this 
group must act effectively on E. Because F is at most ten-dimensional by [3, 3.5] 
and since dim E = 6, we have dim E < 4. But a faithful linear representation 
of Spin3~ is at least four-dimensionaL Hence, we conclude that dim E = 4. 
Therefore, dim(k91 ~< E) = dim F, and thus F = ~1 D< E = k9 ~ E holds, because 
F is connected. Moreover, we have dim .A4 = 4, because F/k~ ~ E. So we can 
apply Lemma (5) which yields the compactness of.A4. But this contradicts the fact 
that .A// = F/tY ~ E ~ 11~ 4. Consequently, the case dim E = 6 is impossible. 

CASE 2. dim E = 3. In this case we have E = K -~ Spin3~ and ~ ~ It~ s. 
Let n E I~ be such that A(n) ~ 1 but A(n+l) = 1. Then A(r~) -- I~ s" for some 
integer s,~ > 0. First, we shall show that dim .M _> 4 holds, so that we may apply 
Lemma (5) to conclude the compactness of .M. Then we shall verify that .M is 
simply connected. This situation will give a contradiction similarly to the proof of 
Theorem (7). 

Step 1. The quotient space .A4 is a four-dimensional compact analytical man- 
ifold. Being a homogeneous space which is equivariantly homeomorphic to the 
quotient space of  a Lie group modulo a closed subgroup, the set .M is an analytical 
manifold. To prove the compactness of .M we use Lemma (5). To apply this lemma, 
we only have to verify that dim .M _ 4 is satisfied. For this, choose t E 1~ minimal 
such that the involution w does not act trivially on T := A(t -1) /A(0 ------- ~8~. Such 
an integer t exists, since else w would act trivially on A (apply Lemma (9) t times 
to A (l) and A (t-l), where 1 < l < t). This would imply that £x _< ~ and ~ would 
be a central involution of F. Consequently, we would have dim F _< 6 which 
would be a contradiction to our assumption dim F _> 8. Hence, the involution w 
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and thus the group E acts non-trivially on the quotient T. Because of the mini- 
mality of t we have A(t) _< ~ by (9). The involution w splits T into the direct 
sum T = T+ ® T_ of the eigenspaces corresponding to the eigenvalues 1 and 
- 1 .  The eigenspaces T+ and T_ are F-invariant, because w is central in E. Let 
II := U T+ <_ A(t- l )  be the preimage o f T +  with respect to the canonical projec- 
tion A ( t - l )  ---+ '~. The involutionw E E --- Spin3~ acts non-trivially o n  A(t-1)/II  
(use again Lemma (9)). This implies that E acts effectively on A(t-1)/II  - ~k. 
Hence we have k > 4, since the group Spin3~ has no faithful representation of 
dimension less than 4. The involution w acts trivially on II by definition of II 
which implies that II <_ q O A (t-l). On the other hand, if/~ E q n A (t-l) then 
/~ = /i which implies that (5 C II. Hence we have II = ~ N A ( t -0 .  The groups 
A ( t-1) q / ~ and A ( t-1) / ( ~ll N A ( t - l ) )  = A ( t -  O / II are isomorphic as topological 
groups, see [6, Th. 5.33]. In particular, we have 

r A(t-1)ffl &(t- l)  
dim .A4 = dim ~- _> dim T - dim ~ - k _> 4. (1) 

Thus, we may apply Lemma (5) to conclude that .A4 is compact and four-dimensional. 
Furthermore, this implies that in (1) actually we have equality throughout. 

Step 2. The  manifold .A4 is simply connected. According to the representation 
F = E ~< A there exists a subgroup A ,  _ A such that • = E ~< Ao.  By 
[11, Ch. 2, §8, Cor. 1], the quotient A4 = F/~I/is simply connected if and only 
if q is connected. Since E is connected and 9 can be written as # = E ~ A,I, it 
suffices to verify the connectedness of A,I,. 

Using the notation of Step 1 we have A(t-l)  n A,I, < II and thus A (t-l) n A,I, = 

II N A~.  Setting ~ A(i) := A (i) n A~,  we obtain 

(i#~ t /_.x ,i , " (i-l) / (II N A~)  
dim A,I, = dim ~ + dim A(~) (2) 

~,~ / 

On the other hand, by relation (1) we have dim .hA = dim A(t-1)/II  = 4 and thus 

dim A(i) J + d i m ~ - ~ = d i m A - 4  (3) 

holds. Considering the representations F = E ~< A and • = E ~< A,I, we infer that 
.A4 = F/~I /~  A / A o .  Consequently, by [12, Th. 2.1] we have the equation 

dim Ao = dim A - 4. (4) 

A(i- l)  Since A(i) A(0 N A,I, = A (i) N ~,I, this implies that 

A(~ -1) A(i- l )  A(i)A(i-1) A(i-1) 
"-'* ~ - - ~  < - -  (5) 

A(1) -" (A(Q n A(i-I)'~ -- A(i) -- A(1) 
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Similarly, from the relation A(~ ) = A(t) (use A(0 < 9)  we infer that 

(IInA,~) (IInA~) < II 
A(~) - A(t) - A(t)" 

Combination of the relations (2) to (6) yields the equations 

A(~ -1) A( i -1)  
dim - d i m - -  ( i ~ t )  

A(~) A(i) 

and 
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(6) 

dim (II n A~)  = dim II 
A(~) A(t) 

for I < i < n + 1. Consequently, by relations (5) and (6), we obtain the following 
isomorphisms between topological groups 

A(i-1) * '~= A(i-1)-- '~= I~ s' (i # t) (7) 
A(~) A(0 

A(t-1) (A (t-l) n A~) (II n A~) IX 
- Z ( + )  - ( 8 >  

Thus the connectedness of A@ can be verified inductively from the following part 
of the long exact homotopy sequence 

/ A ( + - I ) \  

For this, we first note that by the isomorphisms (7) and (8) we have 

/'A(i-1) \ /A(i-1)) 

and thus the sequence above reduce to 

(~ ,, ,. (~-l)~ 
l ~ T r 0 ( A  ) ) ~ r o t Z a ~  ) ~ 1 .  

Hence, via induction the sets 7r0(A(~ )) have equal cardinality for all 0 < i < n + 1. 

But since A~ n+l) < A (n+l) = I is connected, this implies that all groups A(~ ) and 

in particular A~, = A(~ ) is connected which proves the assertion of Step 2. 
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Step 3. The contradiction. Since F acts transitively on the simply connected 
compact manifold M ,  the maximal compact subgroup K of F acts transitively, too, 
on .M, see [10, Ch. V, Th. (5.6)]. But as we have shown before, this is a contradiction 
to dim .h4 = 4 and dim K = 3. Thus the assumption that the dimension of F is at 
least 8 is contradictory and the theorem is proved. 

Summing up, we get the following result: 

(11) COROLLARY. If r is a Lie group having a connected ternary fixed field ~r ,  
then either F is isomorphic to one of  the groups G2(-14) or SU3C~ or the dimension 
of  ~ is at most 7. 
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