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Abstract. Smooth stable planes have been introduced in [4]. We show that every continuous 
collineation between two smooth stable planes is in fact a smooth collineation. This implies 
that the group $ of all continuous collineations of a smooth stable plane is a Lie transformation 
group on both the set  P of points and the set $ of lines. In particular, this shows that the 
point and line sets of a (topological) stable plane $ admit at most one smooth structure 
such that $ becomes a smooth stable plane. The investigation of central and axial collineations 
in the case of (topological) stable planes due to R. Löwen ([25], [26], [27]) is continued for 
smooth stable planes. Many results of [26] which are only proved for low dimensional planes 
$ are transferred to smooth stable planes of arbitrary finite dimension. As an 
application of these transfers we show that the stabilizers $ and $ (see (3.2) Notation) 
are closed, simply connected, solvable subgroups of $ (Corollary (4.17)). Moreover, 
we show that $ is even abelian (Theorem (4.18)). In the closing section we investigate the 
behaviour of reflections. 

1991 Mathematics Subject Classification: 51H25, 51A40. 

1. Introduction 

In the early 30’s Kolmogoroff was the first who combined projective spaces with 
topological structures. In the mid-fifties, Skornyakov (1954) and Freudenthal (1957) 
published two papers on topological planes, and it was Helmut Salzmann who 
started the systematic investigation of topological plane geometries in 1955. Re¬ 
membering the initial task of Euclid and Hilbert to characterize the euclidean plane 
$, it is natural to consider not only the topology of $ but also its differentiate 
structure. This leads from topological geometry to smooth geometry, i.e. incidence 
geometry on smooth manifolds such that the geometric operations are smooth. 

In sharp contrast to the case of (compact) topological planes, only a few papers 
on smooth geometries have been published up to now. The pioneer of smooth 
geometry, S. Breitsprecher, wrote three papers in the late 60's, [7], [8], [9]. In 1972, 
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752 Richard Bodi 

Dieter Betten published a paper [2] on differentiable two-dimensional projective 
planes, in which he answered a question of Hellmuth Kneser by showing that the 
proper Moulton planes cannot be turned into smooth projective planes. After a 
period of 14 years where nothing was published about smooth geometry, Hermann 
Hahl revived thisfieldwith two papers, [18] and [14], (one of them is a joint paper 
with Theo Grundhofer) about spherical fibrations which lead to smooth translation 
planes defined over division algebras. The main result of these two papers is that 
every smooth translation plane defined over some division algebra is isomorphic 
to one of the classical projective planes $, i.e. the projective planes defined over 
the real, complex, quaternion, or octonion numbers, which we abbreviate by $, 
$, and $, respectively. Joachim Otte generalized this result in 1992 to arbitrary 
translation planes, see [33] and [34]. 

We introduced the concept of a smooth stable plane in [4]. In this paper we will 
study collineations and collineation groups of smooth stable planes. We recall the 
most basic definitions of [4]. 

(1.1) Definition. A linear space is a triple $ of sets $ and $, where 
P denotes the  set of points, $ is the set of lines and $ is the set of flags, 
such that for every pair of distinct points p, q there is exactly one joining line $, 
i.e. $. If $, we will say that p and L are incident, or that 
p lies on L, or that L passes through p. 

(1.2) Definition. A stable plane $ is a linear space $ which satisfies the 
following three axioms: 

(S1) There are Hausdorff topologies on both P and $ that are neither discrete nor 
anti-discrete such that the join map $ and the intersection map $ are con¬ 
tinuous. Moreover, the domain $ of the intersection map is an open subset 

of $. 
(S2) The topology on P is locally compact and has positive finite covering dimen¬ 

sion. 
(53) $ contains a quadrangle. 

A smooth stable plane $ is a stable plane $ such that P and $ are smooth 
manifolds and such that the join and intersection mappings are smooth on their 
(respective) domains. 

We will use the words smooth and C∞-differentiable synonymously. Note, however, 
that the results of [4] as well as of the present paper are still valid for C2- differentiable 
stable planes. 

(1.3) Examples. Every subgeometry defined on some nonempty open subset of the 
point set of one of the classical projective planes (see the introduction for the 
definition of a classical plane) is a smooth stable plane. This includes the hyperbolic 

Bereitgestellt von | ZHAW Zuercher Hochschule für Angewandte Wissenschaften
Angemeldet

Heruntergeladen am | 23.02.18 10:00



Collineations of smooth stable planes 753 

planes. Otte, [33], has shown that there is a plethora of non-classical smooth affine 
and projective planes. He describes these examples algebraically in terms of a 
coordinatizing ternary field. However, his examples are in general rather unaccessible 
from a geometric point of view. More explicit examples of smooth affine and stable 
planes will be given in forthcoming papers. 

For the readers’ convenience the following theorem summarizes some properties 
of stable planes. Proofs can be found in [25] and [28]. 

(1.4) Theorem. Let $ be a stable plane and let $. 

a) The point row L is a closed subset of the set P of points, the line pencil $ is 
compact, and the flag space $ is a closed subset of $. 

b) The set $ of lines and the line pencils $ are connected. 
c) $ with $, and $, 

$, where dim denotes the covering dimension. The stable plane $ is 
said to be 2l-dimensional. 

d) dim U = dim X for every open subset U of $. 

Throughout this paper, let $ denote a smooth stable plane of dimen¬ 
sion n = 2l. 

2. Collineations 

The main topic of this chapter is the investigation of smooth collineations (i.e. 
automorphisms) of smooth stable planes. We show that every continuous collinea-
tion of such a plane is in fact a smooth collineation. This implies that the group $ 
of all continuous collineations is a Lie group with respect to the compact-open 
topology. In particular, the smooth structures of a smooth stable plane are uniquely 
determined by the underlying (topological) stable plane. 

(2.1) Definition. Let $ and $ be two smooth stable 
planes. A collineation $ is a pair $ of bijections γP: P → P′ and 
$ such that $. We write $ instead of $. If 
$, then y is called a collineation of $. A collineation γ is called continuous 
(smooth), if the mappings γP and $ are continuous (smooth). Most of the time, we 
will just use the symbol y instead of $ or $. 

Since the point rows of a stable plane $ are submanifolds of P by 
[4], (2.6), we may apply the notion of smoothness to the restriction γP|L of a 
collineation $ to some point row L. 

(2.2) Proposition. Let $ be a collineation. If there exists a line $ such 
that the restriction γp|L is smooth, then y is a smooth collineation. 
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Proof. Let $ such that γP | L is a smooth mapping. 
1) We first show that γP|K is smooth for every line $. Fix a line $ 

and let u be some point on K not incident with L. Choose some point $ and 
select another point $ which exists by (S3). Then, by axiom (S1), 
the projectivity 

$ 

is defined on some open neighborhood U of u in K. Moreover, by [4], (2.7), the 
map η: U → η(U) is a diffeomorphism and η(U) is an open subset of L. Since γ 
is a collineation, we have the commuting diagram 

$ 

where η′ is the projectivity of $ which corresponds to η, i.e. we have 

$. 

Hence, the restriction $ is smooth and thus γP|K is smooth as well. 
2) According to [4], (2.8) and (2.9), a collineation y is smooth if and only if one 

of the maps γP and $ is smooth. Hence, in order to prove the proposition, we only 
have to check that $ is smooth. Let $. Choose two distinct points p, q on 
M, and let $ and $. By [4], (2.9) there is an open neighborhood 
$ of M in $ such that $ is a dif¬ 
feomorphism onto some open subset of K × L. Setting $ for $, we 
have the diagram 

$ 

where $ is the diffeomorphism given by [4], (2.9) with respect 
to $ and b = γP|K × γP|L . This diagram commutes, because for $ we have 

$. 
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By what we have proved in 1), this implies that $ is smooth at M. Since $ 
can be chosen arbitrarily, the claim follows. 

The following main theorem shows that there is, in fact, no difference between 
continuous collineations and smooth collineations. 

(2.3) Theorem. Every continuous collineation  $ between two smooth stable 
planes is a smooth collineation. 

Proof. By Proposition (2.2) we have to check that the restriction yP|L is smooth 
for some line $. Fix a point o incident with L. By [25], (1.21), there is a 
quadrangle $ in P with $, and there is an open neighborhood U 
of o in L such that a ternary operation τ: U × U × U → Lis defined in terms of 
join and intersection. Thus τ is smooth. Setting $ for $, where 
$, we get a smooth local H-space $ in the sense of 
[5], (1.2). Since the image $ is a stable plane, the quadrangle $ is mapped 
by γP onto a quadrangle $. As before, we obtain a smooth 
local H-space $ on the point row L′ = γP(L). Since γ is a collinea¬ 
tion and since the operations + and +′ are defined in purely geometrical terms, 
the map γP | L is a continuous homomorphism between the smooth local H-spaces 
$ and $. By [5], (1.8), we conclude that γP | L is smooth on some neighborhood 
of o. By varying the point o on L, this shows that the map γP | L is smooth at every 
point of L. This completes the proof. 

Let $ be the group of all continuous collineations of the smooth stable plane $. 
We will refer to $ as the automorphism group or the collineation group of $. The 
compact-open topologies of $ on P, on $, and on $ coincide. In this topology, 
the group $ is locally compact, and $ acts as a topological transformation group 
on P as well as on $ by [25], (2.9). According to Theorem (2.3), the group $ 
consists of diffeomorphisms of P and of $. Since $ is connected (see Theo¬ 
rem (1.4)), we get the following result from [31], Chap. V, Th. 2. 

(2.4) Corollary. The automorphism group $ of a smooth stable plane  $ 
is a smooth Lie transformation group on the manifold P of points, the manifold $ 
of lines, and the manifold $ offlags with respect to the compact-open topology. 

As another immediate consequence we have 

(2.5) Corollary. A (topological) stable plane $ admits at most one smooth structure 
on the set P of points and on the set $ of lines, respectively, such that $ becomes 
a smooth stable plane. 

Remark. The proofs of Proposition (2.2) and Theorem (2.3) are still valid for injective 
continuous homomorphisms $, i.e. γP and $ are injective con-
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tinuous maps such that $: the arguments used in the proof of 
Proposition (2.2) do not use the fact that γ is a surjection. In order to prove Theo¬ 
rem (2.3) for injective continuous homomorphisms we only need to check that the 
image $ of a quadrangle $ is again a quadrangle. But this is true since $ is 
injective and thus has to map the four distinct vertices of $ to four distinct vertices 
of $. Since we are mainly interested in the automorphism group $ of a smooth 
stable plane, we restrict our attention to isomorphisms. 

3. Basic results on central collineations 

Central and axial collineations of topological stable planes behave quite differently 
compared to their relatives in projective planes. For example, a central collineation 
of a stable plane need not have an axis, because you can remove the points of an 
existing axis and get a new stable plane by restriction. However, in the case of 
smooth stable planes differentiability does not guarantee any fixed elements, but 
makes certain proofs work just as if these fixed elements existed. 

(3.1) Definition. Let $ be a smooth stable plane. A collineation y of 
$ is called a central collineation with center p if γ fixes every line through p. Dually, 
a collineation γ is called axial with axis L if every point on L is a fixed point of γ. 

Note that it is not necessary to require a central or axial collineation to be continuous 
or even smooth. In fact, any such collineation is continuous by Löwen [25], (3.2), 
and thus is smooth by Theorem (2.3). In contrast to the projective case, a central 
collineation of a stable plane need not have an axis and an axial collineation may 
have no center. Moreover, a central collineation γ may fix every point of an open 
subset of some line A rather than every point of A. Such a central collineation is 
called semi-axial and A is referred to as its semi-axis, see Lowen [26], §3. 

(3.2) Notation. For any point $ we denote by $ the subgroup of $ con¬ 
sisting of all central collineations $ with center c. The group $ for some line 
A is defined dually. Moreover, we use the abbreviations $ and 
$. The group $ is defined dually. If (c, A) is a flag, then the 
elements of $ are called elations, otherwise they are called homologies. Note that 
unlike in the projective case, where every central (axial) collineation has an axis 
(a center), it is not clear whether or not the generating sets $ and $ 
form subgroups of $. Nevertheless, as we will see later, this turns out to be true 
for the groups $ (see Corollary (4.9)). 

We turn to local versions of the aforementioned groups. Let (c, A) be a flag. We 
define $ as the set of all central collineations with center c and semi-axis A that 
fix every point of some open neighborhood O of p in A. We refer to the elements 
of $ as semi-elations. Clearly, the set $ of semi-elations forms a group. As 
in the case of elations we put $ and $. If, 
on the other hand, (c, A) is an anti-flag (i.e. not a flag), we define $ to be the 
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set of all axial collineations with axis A that fix every line $ for $. We call 
such collineations semi-homologies and we speak of c as their semi-center. We will 
show, however, that every semi-homology (semi-elation) of a smooth stable plane 
is in fact a homology (an elation); see Theorem (3.5) and Corollary (4.6). 

(3.3) Theorem. For every point $ and for every line $ the derivation mappings 
$ and $ are Lie group 
homomorphisms. 

Proof. The stabilizers $ and $ are closed subgroups of $. Since the latter group 
is a Lie group by Corollary (2.4), these stabilizers are Lie groups as well. Because 
any continuous homomorphism between Lie groups is a Lie group homomorphism 
(i.e. it is analytic), it suffices to prove that D p and DL are continuous mappings. 
The set P of points is locally connected by Lowen [25], (1.4) and (1.11), and thus 
every connected component of P is an open subset of P. Hence the connected 
component Pp of p in P becomes a smooth stable plane via restriction. Moreover, 
the stabilizer $ leaves Pp invariant and acts effectively on Pp. Applying [31], The¬ 
orem, p. 208 ff to the transformation group $, we conclude that the homo¬ 
morphism $ is continuous. Since the set $ of lines 
is (arcwise) connected, the continuity of DL follows immediately. In order to show 
that the line space $ is arcwise connected, we use the fact that every line is locally 
arcwise connected (Lowen [25], (1.12)). Hence every line pencil $ is locally arcwise 
connected as well ([25], (1.7)) and thus $ is arcwise connected, since it is connected 
([25], (1.14)). Now choose two lines $ and fix two distinct points $ and 
$. Then there are paths from K to $ and from $ to L. Concatenating 
these two paths gives a path from K to L in $. This proves the arcwise con¬ 
nectedness of $ as well as the theorem. 

When passing from (topological) stable planes to smooth stable planes $, 
one of the most useful additional structures you get are the topological translation 
planes $ defined on the tangent spaces Tp P at any point $. These planes are 
defined as follows. The set of points is just Tp P and the collection $ 
of l-dimensional subspaces serves as the line pencil at the origin $. By [4], 
we have $ and $ for any two distinct 
lines $. Any family of l-dimensional subspaces of a 2l-dimensional vector 
space V that satisfies these two axioms is called a spread on V. It is a well-known 
result that every spread $ on V defines a translation plane $ on the point set V 
by putting $ as the set of lines of $. By [4], (3.5), the 
planes $ are even locally compact affine translation planes. We will refer to $ 
as the tangent translation plane at p and to $ as the tangent spread at p. The 
projective closure $ of $ is a compact connected projective translation plane and 
we denote by L∞ the line at infinity of $ with respect to the affine plane $. Note 
that the dually defined tangent incidence structure $ at some line L need not be 
an affine plane. While axiom (SP2) is still valid, axiom (SP1) may not be true 
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anymore. Nevertheless, the incidence structure $ is the dual of a so-called shear 
plane which is a special kind of a stable plane. In fact, shear planes can be regarded 
as a generalization of translation planes in the category of stable planes, see [4], 
section 4, and [24]. 

If $ fixes some point $, then the derivation mapping $ maps $ 
to $. In this way, every collineation $ induces an action on the tangent 
spread $. This action is given by  Dpγ(TpL) = Tp(Lγ) for every line $. Thus, 
the transformation groups $ and $ are equivalent via the 
equivariant homeomorphism $. Since Dpγ is a linear map on 
TpP which acts on the tangent spread $, the group $ consists of automorphisms 
of $ which fix the origin 0 of TpP and the line L∞ at infinity. 

In this and the following chapter we want to determine the kernel of Dp (see 
Theorem 4.13) and then utilize the map Dp in order to derive some results on the 
structure of elation groups and of reflections. 

(3.4) Lemma. If $ fixes three lines $ for some point $, then the 
set Fγ of fixed lines of γ acting on $ is a homology m-sphere S with m ≥ 1. 

Proof. By Theorem (1.4), the line pencil $ is homeomorphic to $. Assume that 
γ acts non-trivially on $ . The image Dpγ fixes the three different lines T PLi of the 
tangent translation plane $. By Hahl [16], (2.1), the group of automorphisms of 
$ that fix the three lines Tp Li induces a non-trivial compact Lie group $ on the 
tangent spread $. Thus the group $ contains some torus subgroup $ of 
$ or Dpγ has finite order r. Suppose that $ contains a torus group $. Then we 
have $ since |Fγ| ≥ 3. Thus, by Floyd [13], (4.1) and [12], (5.2), the fixed 
point set $ of a torus group T acting on a (homology) sphere with fixed points is 
a homology m-sphere with m ≥ 1. Since Dpγ topologically generates $, we infer 
that $. In particular, we have $, whence 
Fγ is a homology m-sphere. If, on the other hand, the order r of Dpγ is finite, we 
let $ be the decomposition of r into its prime powers, and we put 
$ as well as $. By Liao [23], the fixed point set Fk—1 of 
φk—1 is a homology sphere of positive dimension (remember that |Fγ|≥3 by 
hypothesis). Because φk — i — 1 acts on Fk—1, we inductively conclude that F(Dpγ) is 
a homology m-sphere with m ≥ 1. Hence the claim of the lemma follows. 

The next theorem is in the spirit of R. Baer’s characterization of quasi-perspectivities 
of projective planes (Baer, [1]); see Stroppel, [38], Theorem 5 for an extension of 
Baer's theorem to stable planes. 

(3.5) Theorem. If $ fixes an open subset of some line pencil $, then γ is a central 
collineation with center c. In particular, every semi-homology is in fact a homology. 

Proof. By Lemma (3.4), the set Fγ of fixed lines of γ acting on $ is a homology 
m-sphere S. Since γ fixes an open subset  U of $, we have $ 
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according to Theorem (1.4). We will show that $. The following part of the 
proof is due to Linus Kramer. Let L be some interior line of S and choose some 
neighborhood $ around L. Denote by $ the inclusion map and con¬ 
sider the diagram of singular homology groups over $ 

$ 

By invariance of domain, the restriction ι | U is a homeomorphism and thus the 
induced map $ is an isomorphism. Since S and $ are $-orientable, the 
horizontal arrows on the left hand side are isomorphisms, while the horizontal 
arrows on the right hand side represent excision isomorphisms. In particular, the 
induced map $ is an isomorphism, too. Suppose that i is not surjective. Choose 
some line $. Then ι factors as $ in contradiction to 
$. Thus we have proved that $. Now, the 
second statement follows from [4], (1.7). 

(3.6) Theorem. For every point $ the kernel of the mapping Dp consists of central 
collineations whose semi-axes, if they exist, are incident with p. Dually, for every line 
$ the kernel of the mapping DL consists of axial collineations whose centers, if 
they exist, are lying on L. 

Proof. Let $ and $. If γ acts non-trivially on the line pencil $, then Dpγ 
acts non-trivially on the tangential spread $ and hence $ . Thus we may 
assume that γ is a central collineation (with center p). Moreover, suppose that y 
has a semi-axis A not incident with p. Then A is an axis of γ, since γ fixes every 
line through p. We have to verify that γ is not contained in the kernel of Dp. Indeed, 
fix two distinct points u, v on A, and put $ and $. The triangle 
{p, u,υ }defines a smooth local loop T in the sense of [3] on a neighborhood $ 
of p, see Lowen [25], (1.21). Since γ fixes its axis A pointwise, the restriction of γ 
to U is a homomorphism of T. We now construct a coordinate system (h, U) of P 
around p such that $ is a linear map, which shows that $. In order 
to define h, we use two charts $ and $ of the lines Ku and Kυ around p. Applying 
[4], (1.11) to these charts we get a chart  h of P around p satisfying $. By 
the results of Kozma, [21] and [22], there is a so-called canonical coordinate system 
$ for the local loop T, and with respect to this chart the restriction $ is 
locally a linear map. Taking an arbitrary chart $ on $ around p, this proves the 
first part of the theorem. 

For the dual assertion, we assume that $ is an axial collineation with 
axis L and semi-center $. By Theorem (3.5), the point p is in fact a center of 
γ. The map $ is a diffeomorphism between V and an 
open neighborhood $ of $ (see [4], (1.7)) that transfers the smooth local loop 

Bereitgestellt von | ZHAW Zuercher Hochschule für Angewandte Wissenschaften
Angemeldet

Heruntergeladen am | 23.02.18 10:00



760 Richard Bodi 

structure T on V to a smooth local loop structure $ on $. Clearly, the collineation 
γ is a homomorphism of T again. Since γ commutes with $, the map γ induces a 
homomorphism of $ and we may proceed as before. 

(3.7) Proposition. Let (p, L) be a flag. Then $ and $. 

Proof. Let $ for some flag (p, L). Since γ fixes every line of $, the 
derivative Dpγ fixes every element of the tangential spread $. According to Hähl 
[18], (2.1) and (2.3), we may select two spread elements $ and a basis 
$ o f T P P s u c h t h a t $, a n d 
$. Since Dpy leaves the subspaces TPP, V, and W in¬ 
variant, the matrix representation of Dpγ with respect to $ is just $, where 

$. Because γ is the identity on some neighborhood of p in L, its derivative 
Dpγ is the identity on TPL, i.e., we have $. We omit the verification of the dual 
statement. 

(3.8) Corollary. We have  $ and $ for every point $ and 
every line $. 

Since every central collineation of a projective plane has an axis and vice versa, the 
last two results enable us to characterize the kernels of Dp and DL for smooth 
projective planes in purely geometrical terms. 

(3.9) Corollary. If $ is a smooth projective plane, the kernel of Dp (of DL) consists 
exactly of all elations with center p (with axis L). 

We will generalize the above result to smooth stable planes in the next section. If 
a central or an axial collineation $ of a stable plane $ fixes some triangle 
$, then γ has both a center and an axis. Moreover, the center o of γ 
must be contained in $ and the axis must be the line of this triangle opposite to 
the center, cf. Löwen [25], (3.4). Thus, by Theorem (3.6), the map Do is a faithful 
continuous representation of $. 

(3.10) Corollary. The stabilizer $ of a triangle $ in a smooth stable plane $ is a 
linear Lie group. 

In the case of smooth projective planes, Theorem (2.3) together with Theorem (2.10) 
of [3] implies the compactness of the stabilizer of a quadrangle (recall that every 
quadrangle of a projective plane determines a ternary field, and that the stabilizer 
of a quadrangle can be regarded as the automorphism group of the associated 
ternary field). 
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(3.11) Corollary. The stabilizer $ of a quadrangle $ in a smooth projective plane 
$ is a compact Lie group. 

(3.12) Corollary. Let $. If (p, L) is a flag, then $ is a linear Lie group for 
every point $. If (p, L) is not a flag, then $ itself is a linear Lie group. 

Another corollary which can easily be derived from Theorem (3.6) deals with the 
structure of homology groups of stable planes (whereas the structure of elation 
groups is the subject of the next section). Beforehand we need a lemma. 

(3.13) Lemma. Let $ be a Lie group whose maximal torus subgroups are at most one-
dimensional. Then every one-parameter subgroup of $ is closed in $. Consequently, 
every connected subgroup of $ is closed. 

Proof. Let $ be a one-parameter subgroup. Suppose that P is not closed. Then, 
by Hochschild [20], Chap. XVI, Prop. 2.3, the closure $ of P is compact. Since $ 
is abelian, we conclude that $ is contained in a torus subgroup T of $. Thus we 
have dim $ by hypothesis. Arcwise connectedness of P and $ now implies that 
$ = P, and hence P is a closed subgroup of $ after all. The last statement follows 
from [20], Chap. XVI, Theorem 2.4. 

(3.14) Corollary. If $, then the connected component $ of the homology group 
$ can be embedded as a closed subgroup into the homology group of the classical 
projective plane of the respective dimension. 

Proof. By Theorems (3.3) and (3.6), the derivation map $ is a 
continuous injection, and since $ fixes every line through p, its image under Dp 

fixes every element of the tangent spread $. The group DpΓ[p,L] cannot contain 
an elation, because any element of this group fixes every line through o as well as 
the line L∞. Thus DpΓ[p,L] is a group of homologies of the tangent translation plane 
$, with the origin o as its center and the line L∞ at infinity as its axis. By Hähl 
[15], (3.2), the group A u t ( $ ) $ is isomorphic to the multiplicative group of the 
kernel of the quasifield  Q which is associated to the spread $ . Since the kernel of 
Q is one of the classical fields $, $, or $ according to Buchanan and Hähl [10], 
we can apply Lemma (3.13) in order to conclude that the restriction $ is a 
closed mapping. 

Recall that in the topological case it is not known whether the preceding corollary 
is true or not. Even for compact projective planes only a weaker result is known, 
see Hähl [17], (3.5). For stable planes of dimension at most 4, however, there is a 
proof of this corollary which is due to H.-P. Seidel [36]. 
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4. The structure of elation groups 

In this section we will elucidate the structure of the semi-elation groups $ and 
$. We will show that the connected components of these groups are simply 
connected solvable closed subgroups of the automorphism group Γ of the smooth 
stable plane $. Moreover, it will turn out that $ is even abelian. For the classical 
projective planes $ ( $ ) and, more generally, for affine or projective 
translation planes, these groups are isomorphic to vector groups. However, no 
proof of this claim is known even for compact connected projective planes. The 
most sophisticated results on the structure of (semi-)elation groups in the projective 
case are due to Hähl, [17], (3.7), and to M. Lüneburg, [29], VII, Satz7. 

For the investigation of the structure of semi-elation groups, we start with a 
lemma which is well-known for affine and projective planes. 

(4.1) Lemma. Let $ be a (topological) stable plane and let $ and $. 
If $ contains elations with different axes, then $ is commutative. The dual 
statement holds for the group $. 

Proof. It suffices to show that any two elements of the generating set $ 
commute. Let $ and $ with A ╪ A'. Then we have $ and 
thus the commutator [γ', γ] of γ and γ' lies in $. With the same type of argument 
it is easily checked that $. Since $ by Löwen [25], 
(3.4), we conclude that  γ commutes with γ'. If, on the other hand, we have $, 
we choose $ with A ╪ A'. Since $, we already know that γγ' commutes 
with γ". By associativity, we finally conclude that γ and γ" commute. Since the dual 
statement of [25], (3.4) is trivially true, the second part of the lemma is proved 
similarly. 

It is not obvious that $ is a closed subgroup of Γ, since at first sight it seems to 
be possible that there is a sequence $ in $ such that $, where 
$. However, the next proposition shows that in fact this cannot 
happen. 

(4.2) Proposition. For every flag (c, A) the group $ is a closed subgroup of Γ. 

Proof If dim $, then $ according to Löwen, [26], (3.4), and the 
assertion is obvious. Hence we may assume that dim $. Let $. By defini¬ 
tion, the collineation γ fixes some neighborhood O of c in A pointwise. By [26], 
(3.3) every element of $ fixes some connected component of A\{c} pointwise. 
We will show that there is a common connected component which is fixed pointwise 
by any $. Being a manifold, the line A is locally connected as well as a Cantor 
manifold, i.e. any connected component of A cannot be separated by a set of 
dimension at most dim A — 2, cp. Löwen, [28], Theorem 11. Thus we may choose 
O to be connected, and since dimO = d i m $ , we infer that 0\{c} is still con-
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nected. Let C denote the connected component of A\{c} containing 0\{c}. Since 
every element of $ fixes $ pointwise, the assertion follows. 

The impact of the last result on the maximal compact subgroups of $ is as follows. 

(4.3) Corollary. If (c, A) is a flag, then $ does not contain any non-trivial compact 
subgroup. 

Proof. Since $ is closed in Γ by Proposition (4.2), the group $ is a Lie group. 
A non-trivial compact subgroup K of a Lie group is either finite or contains a torus 
subgroup. In either case, such a group K contains non-trivial elements of finite 
order if $. But $ does not contain any non-trivial element of finite order, 
see Löwen, [26], (3.2). Hence the claim follows. 

By Löwen, [26], (3.18) we obtain another important consequence. 

(4.4) Corollary. If $ for some flag (c, A), then every line of $ different from 
A is homeomorphic to  $ or to $. Moreover, we have  $, and every line of 
the smooth stable plane ( $ ) is dijfeomorphic to $. 

The next lemma collects the results of Propositions (3.2), (3.3) and (3.4) of Löwen's 
paper [26]. Note that for smooth stable planes we need not assume that dim $. 
In order to formulate the next lemma we need the notion of coaffine points. A 
point $ is called coaffine if and only if exactly one line L of $ is not compact. 
In this case, the line L is called pointwise coaffine, see [26], (1.4) and (1.6). 

(4.5) Lemma. Let $ for some flag (c, A). Then thefollowing statements hold: 

a) For every point $, the iterated images $ converge to c as n → ∞. 
b) The smooth stable plane $ is either projective, or the line A is pointwise coaffine. 
c) If γ fixes some point $, then γ is the identity. 

Proof. In order to prove part a), we assume for a start that $ has an ac¬ 
cumulation point $. Then there is a collineation  δ which is a cluster point 
of $ with respect to the compact-open topology such that  xδ = γ, see [26], 
Prop. 3.8. By Weil's lemma, either $ is relatively compact or $ is discrete. 
Because $ is a closed subgroup of Γ which has no non-trivial compact subgroup 
(Proposition (4.2) and Corollary (4.3)), we conclude that $ is discrete with respect 
to the induced topology. In particular, the set $ has no cluster point at all, 
a contradiction. Thus, it remains to verify that $ accumulates at c. For that, 
choose some point $ which is fixed by  γ. Since the line pencil $ is compact 
by [25], (1.17), the sequence $ has a cluster line $. For the sake 
of simplicity we will assume that this sequence converges to  L in $. Since 
$ for any $ (recall that  c is the center of γ), the sequence $ 
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of lines converges to A if and only if the sequence $ converges to c. Thus we may 
suppose that L ╪ A. Fix some point $. By the stability axiom (S1), almost 
all lines $ intersect the line $, and by continuity of the intersection map 
$, the sequence (qn)n≥k of these intersection points converges to q. Hence, from 
the first part of our proof we conclude that q = c. This finishes part a). For part b) 
we follow Löwen's proof [26], (3.2): choose some point $ which is fixed by γ. 
If $ is non-compact, there is some line $ which does not intersect 
L. By stability, however, the images $ and $ do intersect for sufficiently 
large $, because $ converges to A by part a) and because L intersects A. 
Thus, the lines K and L intersect, too. This contradiction shows that the only 
possible non-compact line of $ is the line A. If A is compact, then the smooth 
projective plane $ is projective by [26], (1.3). If, on the other hand, the line A is 
not compact, then A is pointwise coaffine, see [26], (1.6). This proves part b). 
Part c) is an immediate consequence of a). 

Using part b) of the proposition above and the remark before (3.5) in [26], we get 
the following important corollary. 

(4.6) Corollary. Every semi-elation is an elation, i.e. $ for every flag 
(c, A). In particular, we have $ for every point c and $ for 
every line A. 

Note that in the topological (non-smooth) case there are stable planes which admit 
proper semi-elations, see Löwe, [24], Example 6. Hence, Löwe's example of a shear 
plane is a non-smooth stable plane, i.e. there are no smooth structures on P and 
$ which turn $ into a smooth stable plane. 

We note several more consequences of Lemma (4.5), part b). The first one is 
based on the characterization of pointwise affine lines (for a definition see Löwen 
[26], (1.6)), while the second one follows from [26], (3.5). 

(4.7) Corollary. If $ for some flag (c, A), then the smooth stable plane $ has 
a compact line. 

(4.8) Corollary. If $ for some flag (c, A), then every central collineation has 
an axis. 

(4.9) Corollary. For every point $ the group $ can be written as the union 
$ 

Proof. Let $. If $ for every line $ or if $ is a projective plane, 
nothing remains to be proved. Thus, by Corollary (4.8), every element of Γ[c,c] has 
an axis and it suffices to verify that the product of two elations in Γ[c,c] is an elation 
again. So let $ and $, where A ╪ A', and denote by L the axis of the 
product αβ. By Lemma (4.5), part b), the lines A and A' are pointwise coaffine. In 
particular, the point c is coaffine and thus at least one of the two lines A and A' 
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has to be compact (see Löwen [26], (1.6)). Let A be a compact line. Then A meets 
L in some point p ([25], (1.15)) and from  pβ = pαβ = p together with Lemma (4.5), 
part b), we conclude that $. Thus the axis L of αβ goes through c 
and αβ is an elation with center c. 

According to Löwen [26], (3.2), the last corollary implies that Γ[c,c] contains no non-
trivial element of finite order. This result is false for (topological) stable planes. 
Löwe has given an example of a shear plane ([24], Example 6) which admits a 
group of semi-elations isomorphic to the compact group Spin3$. 

(4.10) Corollary. For every point $ the elation group Γ[c,c] is torsion-free. 

Our proof of the preceding corollary mainly relies on the fact that a central col-
lineation has an axis in the presence of compact lines. Unfortunately, the dual of 
this is not true. Thus we are forced to look for another way of proving the dual 
of Corollary (4.10). We divide this proof into two separate parts. 

(4.11) Proposition. Let (c, A), (c',A) and (c,A') be flags. If $ and 
$ then either $ or γγ' has infinite order. 

Proof Let $. If A = A', then the claim follows from [26], (3.2). So let us 
suppose that A ╪ A' and that $ holds for some integer k. Since A ╪ A', the 
collineations γ and γ' commute by Lemma (4.1), and we get $. 
Note also that in this case we have $. We conclude that $. By 
[25], (3.4), this intersection is just the trivial group, and thus  k = 0 follows by 
Corollary (4.3). If $, the assertion is proved analoguously, for Lemma (4.1) 
is self-dual and the dual statement of [25], (3.4) is trivially true. 

(4.12) Theorem. Every non-trivial element of Γ[A,A] has infinite order. 

Proof. Let $. Because Γ[A,A] is generated by the groups Γ[c,A] for $, 
the element γ can be written as a product γ = γ1 γn with $ for some 
points $. If n = 2, the assertion follows from Proposition (4.11). Hence, by 
induction on n we may assume that γ = δγn, where $ has infinite order and 
does not act trivially on the line pencil $. Suppose that $ for some in¬ 
teger k. In view of Lemma (4.1) and Proposition (4.2), we may assume that Γ[A,A] 

is commutative. Hence we get $. Put ε := δk, choose some line $ 
with Lδ ╪ L, and select some point $. Since the sequence $ converges 
to cn by Proposition (4.5), we infer from the stability axiom (S1) that the lines 
$ meet the axis A for sufficiently large integers m. Hence, let $ 
for some suitable integer m. From L ╪ Lδ we obtain that p ╪ cn. Because the line 
$ meets the axis A, the equation 

$ 

shows that $ is a fixed line of ε m δ - 1 . 
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From 
$ 

we conclude that the sequence $ converges to cn. But, on the other 
hand, the points $ lie on the fixed line K which shows that this sequence 
cannot converge to cn since $ and K is a closed subset of P, a contradiction. 
Hence ord(γ) = ∞ and the theorem is proved. 

We proceed with a generalization of Corollary (3.9) by determining the kernels of 
the derivation maps Dp in the stable case. 

(4.13) Theorem. For every point c and every line A we have ker Dc = Γ[c,c], and ker DA 

has no non-trivial compact subgroup. 

Proof. Let $. By corollaries (3.8) and (4.6) we only have to show that 
ker $. The kernel of Dc consists of central collineations with center c, see 
Theorem (3.6). If ker Dc is not compact (e.g. if $, Corollary (4.10)) then every 
central collineation has an axis as in the projective case, see Löwen [26], (3.5) and 
Corollary (4.8), and the claim follows from Theorem (3.6). Hence we may suppose 
that ker Dc is compact. Providing the manifold P of points with a suitable Rieman-
nian metric p such that ker Dc becomes a group of isometries with respect to p (see 
Bredon [6], Chap. VI, (2.1)) this shows that ker $ (Helgason [19], Chap. I, 
(11.2)), and hence the inclusion ker $ holds trivially. Thus we have proved 
that ker Dc = Γ[c,c]. Moreover, the preceding argumentation shows that a maximal 
compact subgroup of ker DA has to be trivial. 

Since the kernel of a Lie group homomorphism is closed, the following corollary 
is a by-product of the last theorem. 
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(4.14) Corollary. For any point c the group Γ[c,c] is a closed subgroup of Γ. 

It is not clear, whether or not Γ[A,A] for some line A is a closed subgroup of Γ. 
However, the next result shows that at least the connected component $ closed. 

(4.15) Proposition. For every line A the connected component $ of the elation 
group Γ[A,A] is a closed subgroup of Γ. 

Proof. Put $. If Y ╪ $ then there is a non-closed one-parameter subgroup 
P of Y, see [20], Chap. XVI, Theorem 2.4. By Stroppel, [38], (8), the Lie group 
Γ[A] (note that Γ[A] is of course a closed subgroup of Γ) does not contain distinct 
commuting involutions, whence the dimension of a maximal torus subgroup of Γ[A] 

is at most 1. This contradicts Lemma (3.13) and we have finished the proof. 

So far we have proved that $ and $ are simply connected Lie groups without 
non-trivial compact subgroups. Decomposing $, say, into its solvable radical 
and a semi-simple Levi complement Ψ, this implies that Ψ is either trivial or iso-
morphic to a direct product of quasi-simple factors each of which is isomorphic to 
the universal covering group Ω of $. In order to show that $ is solvable, it 
remains to exclude the case that $ contains a subgroup isomorphic to Ω. In fact, 
we prove a more general result: 

(4.16) Proposition. If Γ contains a non-linear subgroup Ω, then Ω[c,c] ╪ Ω for any 
point $ and dually Ω[A,A] ╪ Ω for any line $. 

Proof. Assume that there is a point $ such that Ω[c,c] = Ω. Since Ω is not linear, 
it is not abelian and Lemma (4.1) shows that Ω[c,c] = Ω[c,A] for some line $. 
Let $. Because Ω contains no elation with center p, the mapping 
Dp: Ω → GL(TpP) is a (continuous) injection (see Theorem (3.6) and Proposition 
(3.7)) which is a contradiction. Hence, we have Ω[c,c] ╪ Ω. The proof of the dual 
statement runs along the same lines. 

Since the universal covering group of $ is not a linear group, we may summarize 
the information on the groups $ and $ as follows. 

(4.17) Corollary. The elation groups $ and $ are closed simply connected solvable 
subgroups of Γ. In particular, these groups are linear groups. 

Using the fact that the tangent translation plane $ at the point c is an affine 
translation plane (this is, in general, not true for the tangent object $ of some 
line L, see [4], section 4), we can even prove the following result. 

(4.18) Theorem. For any point $ the elation group Γ[c,c] is abelian and $ 
with m ≤ n. 
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Proof. Let $ und choose some point $. The derivation map 

$ 

is injective and its image is contained in the group Y of all shears of $ with axis 
TpA. The group Y is commutative, because $ is a translation plane. Moreover, 
since every quasifield that coordinatizes this plane has an additive group which is 
isomorphic to $, and because Y can be regarded as a subgroup of such a quasifield, 
we have $, see [35], (44.8(b)) and Section 25. If Γ[c,c] = Γ[c,A], then there is 
nothing left to prove. Hence, we may assume that Γ[c,c] contains two elations with 
different axes. Then Γ[c,c] is commutative by Lemma (4.1). Since this group is torsion-
free according to (4.10), its connected component $ is isomorphic to $ for some 
m ≥ 0. The group $ acts on $ with trivial stabilizers. Hence, the dimension 
formula gives $ and the theorem is proved. 

In the next theorem we will use the well-known formula dim G = dim H + dim N 
for a Lie group G, a closed subgroup N of G and H = G/N. 

(4.19) Theorem. If Δ is a closed connected solvable subgroup of Γ which fixes some 
point or some line, then Δ is a linear Lie group. 

Proof. The group Δ is a Lie group, since it is a closed subgroup of the Lie group 
Γ. Assume that Δ fixes some point p. Consider the derivation map $. 
By the last two results the connected component Λ of ker Dp is a simply connected 
solvable group. Of course, the quotient group Δ/ker Dp is a solvable linear group. 
Hence, the quotient Y=Δ/Λ is also a solvable linear group according to [32], 
5.5(2). By a Theorem of Malcev (see [30] or [32], 7.1), the quotient Y can be 
decomposed as Y = T × N, where T is a maximal compact subgroup of Y and N is 
simply connected. We denote by π : Δ → Y the canonical projection of Δ onto the 
quotient Y. Consider the normal subgroup M = π-1(N) of Δ. The connected com¬ 
ponent M1 is simply connected, otherwise it contains a torus subgroup P. Because 
N is simply connected and solvable, we infer that $, whence P ≤ ker π =Λ , 
a contradiction to the fact that Λ is simply connected and solvable. Moreover, we 
have dim M = dimN + dimΛ. Let K denote a maximal compact subgroup of Δ. 
The group K is a torus group which has trivial intersection with M1. Moreover, we 
have dim K = dimT, because the kernel Λ is connected and contains no torus 
subgroup, and we get 

dimΔ = dimY + dimΛ = dimT + dimN + dimΛ = dimT + dimM 
> dimK + dimM . 

Since Δ and K are connected, this implies that K is a complement of M1 in Δ and 
we can write Δ as the semi-direct product Δ = K × M1. By [32], 7.1, this shows 
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that Δ is a linear group. The same argument can be used in order to prove the dual 
statement. 

Since for compact projective planes any solvable subgroup has some fixed point or 
some fixed line (see [29], VII, Satz 3), the last theorem yields. 

(4.20) Corollary. If Δ is a closed connected solvable subgroup of Γ and if $ is a 
smooth projective plane, then Δ is a linear Lie group. 

5. Reflections 
In the last section we study reflections  a of a smooth stable plane $, i.e. a is an 
involutory central or axial collineation of $ . Recall that we do not have to assume 
that a is continuous or even smooth, since this is always true for central or axial 
collineations, see the introduction to Section 3. Moreover, we do not suppose that 
a reflection $ has an axis or, dually, that a reflection $ has a center. 

We are going to transfer the results of Löwen, [26], p. 303-306 to the smooth 
case. As in the previous section it turns out that these results hold without the 
restriction to low dimensions. Before we start with the dual statement of Stroppel, 
[38], (8), we prove a lemma about the eigenspaces of linearized involutions. 

(5.1) Lemma. For $ let $ be an involution. If $ and $ denote the 
positive and negative eigenspaces of  Dxa, respectively, then either  $ 
$ or x is an axis  (if $) or a center (if $) of a. 

Proof. Let $. By Theorem (4.13) we have $. If $, then the 
intersection $ is not trivial for every point $. Now, Dxa acts on the 
set of tangent spaces $ and so D La leaves invariant every subspace $. The 
same argument shows that Dxa acts trivially on the partial spread $ of 
tangent spaces if $. This, however, implies that in both cases  x is an axis 
of a. Being an involution, the map Dxa is diagonalizable with ±1 as its only 
eigenvalues. Hence we conclude that $ if x is not an axis. If 
$, the proof runs the same way. 

(5.2) Theorem. The group Γ[c] contains no pair of commuting reflections. 

Proof. Let $ be two different commuting reflections. Then none of the 
collineations a, β andaβis an elation by Corollary (4.3). If  a fixes some point p ╪ c, 
then a has an axis $ with $ ([26], (3.3)). Since a and β commute, this 
means that $ is a subgroup of Γ[c,A]. Thus the group E acts freely on 
$, see Löwen [25], (3.4). By a theorem of P. A. Smith [37], p. 407, we 
conclude that E has periodic cohomology and hence must be a cyclic group ([11], 
p. 262), a contradiction. Thus, for the rest of the proof we may assume that for 
some fixed line $ the group E acts freely on  L\{c}. In particular, we infer that 
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the derivation map $ is injective. Since a and β act trivially on 
the submanifold $, their derivations DLa and DLβ both induce the identity on 
the tangent space $. According to Lemma (5.1) we may thus write 

$ 
with respect to a suitable basis of $, where all entries are l-dimensional square 
matrices. Since DLa and DLβ commute, we get Y=0, and since the negative 
eigenspace of β has dimension l, we obtain $. Hence, we have DLa = DLβ 
and thus $, which is a contradiction to the injectivity of DL on E. 

Now we turn to Löwen's results on reflections which he verified for stable planes 
of dimensions at most 4. Note that no proofs of the following two results exist 
even in the case of compact projective planes. 

(5.3) Lemma. If $ are different reflections, then aβ is an elation. In particular, 
the smooth stable plane $ is either projective or the axis of aβ is pointwise coqffine. 

Proof. Let $ be two different reflections and set $. 
Fix some line $. Assume that aβ acts non-trivially on L. Then a and β induce 
on L different involutions. Denoting by N the kernel of the action of E on L, we 
put $. 

Now we are going to prove that $ is infinite. As in the proof of Theorem (5.2), 
we may choose a basis of $ such that 

$. 

From $ we infer that $ and $. Setting M = (DLa)(DLβ) 
we get 
$. 

If $, then n must be even and thus 

$ 

Bereitgestellt von | ZHAW Zuercher Hochschule für Angewandte Wissenschaften
Angemeldet

Heruntergeladen am | 23.02.18 10:00



Collineations of smooth stable planes 771 

holds. Hence we have $. Combining this with $ we get 
Y = 0. But this implies that DLa and DLβ commute and we obtain DLa = DLβ as 
in the proof of Theorem (5.2). We conclude that aβ acts trivially on L which is a 
contradiction. Hence the group $ is infinite. 

By Weil's lemma (cp. [20], Chapt. 16, (2.3)) the group $ is either discrete or 
compact. If $ is discrete, the orbits of $ on L have at most two ends. One of 
these ends is the center c, while the other end is either ∞ or it lies on a semi-axis 
of aβ, see [26], (3.8) and (3.9). By conjugation, the reflection a induces inversion 
on $, and thus a interchanges the ends of the orbits in question. Since a fixes 
the point c, both ends most coincide. In particular, the point c must lie on a semi-axis 
A of aβ. By Lemma (4.5), the line A is pointwise coaffine and aβ is an elation by 
Corollary (4.6). If, on the other hand, $ is compact, it contains a maximal torus 
subgroup T of positive dimension t (recall that $ is infinite). If t = 1, then a 
centralizes the unique involution ω of T (note that a normalizes $). Since a 
does not commute with β by Theorem (5.2), we have a ╪ ω. If t > 1, the group T 
possesses a pair of commuting involutions as well. But according to Theorem (5.2), 
the group Γ[c] contains no commuting pair of involutions. Thus, the group $ cannot 
be compact and the lemma is proved. 

As an immediate consequence of the last lemma we obtain the following result 
which can also be deduced in a less direct way from corollaries (3.14) and (4.3). 

(5.4) Corollary. For every pair $ the group Γ[c,A] contains at most one 
reflection. 

The last two results transfer Proposition 3.22 and Corollary 3.23 of Löwen [26] 
to smooth stable planes. 

(5.5) Proposition. Let $ and $ be reflections, where $. Then either 
$ and A is pointwise coaffine, or aβ is an involution with axis $, 
and β has an axis $. 

Proof. Put $. Clearly, the product (aβ)2 is an element of Γ[a,A] If $, 
the assertion follows from Löwen [26], (3.2) and Lemma (4.5). Hence, let aβ 
be an involution. Since A ╪ L is the (unique) axis of a, we get the representation 
$ from Lemma (5.1). Because a fixes every line through c and acts 
nontrivially on $, we have $ and $. Moreover, we 
know that $, since a is the center of β. This implies that $ 
with respect to the decomposition $. Recalling that a and β 
commute, we infer that Y=0. The line L cannot be an axis of β, for  β is a reflection. 
Consequently, we derive from Lemma (5.1) that $ and hence DL(aβ) = — id 
follows. Clearly, this implies that L is an axis of aβ. The last claim follows from 
Lemma (4.5), part c), because β fixes the point c. 

As in Löwen's paper [26], the last result implies the following corollary. 
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(5.6) Corollary. Let $ and $ be reflections, where $ and$. Then 
aβ is a reflection with axis $. 
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