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Abstract 
 

The response of tumours onto ionizing radiation cannot be fully understood by com-
monly used radiobiological models. The reason may lie in the complex structure of the 
cellular systems which show a high degree of compartmentalisation and which is 
characterised by a network of interacting processes at different time scales. To access 
the dynamic response of cells onto radiation, compartmental models based on a 
biological dose equivalent can be used. Two different models (-LQ- and -IR- 
model) are used to fit experimental data of the clonogenic survival of irradiated cells 
at very high dose rates. The models reveal the correct dose rate dependence over a 
wide range of the parameter space when adapting the kinetic constants to the dose 
rate. This adaption could be an indication for the multi-scale structure of the system. 

 
 

1 Introduction 
 
Modern computers and modelling tools allow an efficient implementation and 
subsequent numerical treatment of biomedical models. Such simulations may be used 
for the exploration of the dynamic response of tumours onto anticancer treatment. This 
could lead to a quantitative basis for optimizing therapies, especially for novel or 
combined modalities such as radiotherapy and hyperthermia. However, such an 
approach requires to find a mathematical model or formulation describing the biolo-
gical system in an appropriate way. 

Biologically, the insufficiency of currently used models may be largely due to the 
complexity of the biological system: A whole variety of different intracellular 
mechanisms contribute to cellular repair and this at different time and dose scales. Not 
all of them are quantitatively (or even qualitatively) fully described. 

In addition, some solid tumours exhibit enhanced radiosensitivity at very low doses 
[1,2]. Above a certain dose threshold, however, increased cellular repair can be 
observed for these cell lines which, on a first glance counter-intuitive, lowers radio 
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sensitivity. This indicates a dose- and possibly dose rate dependent induction of repair 
mechanisms. The shortcomings of in vitro based models may also be caused by the 
inherent neglection of intercellular processes related to tissue dynamics, such as 
competition with host tissue, vascularisation and oxygenation, immune reactions and 
related inflammatory processes or the bystander effect [2]. 

Kinetic models at the level of cellular repair are described by many authors (e.g. 
Tobias  [3] Curtis [4] and Carlone et al. [5] and Dale [6]). However, the extension to 
tissue interaction is difficult, since these models are based on the number of DNA-
lesions. To calculate the number of surviving cells, Poisson statistics is used. Since 
repopulation, competition or oxygen consumption depends on the population size, it 
would be favourable to use a corresponding formalism directly based on the numbers 
of tumour cells for models dedicated to the in vivo tumour dynamics. In addition, all 
these models do not reflect the fact that the cellular response cannot be explained by 
DNA lesions kinetics alone. 

This article is addressing the following question: Is it possible to map the complex 
dynamic response of irradiated tumour cells onto simple kinetic models using a 
biological dose equivalent. Two kinetic approaches for modelling the dynamic tumour 
response onto radiation are presented. The models are based on a biological dose 
equivalent, which allows a flexible implementation of different aspects of dose rate 
dependent repair modifications and the interaction of intra- and extracellular 
processes. The models are compared to experimental data. The results indicate a high 
potential of kinetic models for investigating clinical aspects of anticancer therapy.   

 
 
2 Materials and Methods 

 
The basic idea behind the two presented models is to describe the reaction of tumor 
cells on radiation as a dynamic process taking account repair processes that take place 
in different time scales and interact in a non-trivial way. The models combine, 
necessarily in a heavily simplified manner, temporal changes of the tumour population 
(number of tumour cells ( )N N t ), which may be composed of different 
subpopulations i (number of tumour cells ( )i iN N t ) and a kinetic model for a 
biological dose equivalent  . The unit of   is that of the absorbed dose D (energy 
per mass, J/kg = Gy). Initially, the concept of a biological dose equivalent was 
proposed by Oliver [7]. Here, the dose equivalent   is assumed to be proportional to 
the average number of unrepaired sublethal entities per a single cell produced by 
radiation. During irradiation, the energy deposition in tissue is much faster than the 
repair processes or the development of cellular damage. In this sense, ( )t  can be 
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interpreted as transient dose, increasing with the dose rate /R D dD dt   and 
decaying with the repair of the sublethal lesions. 
 In principle, the kinetic model for   summarizes the biophysical and biochemical 
processes of energy deposition of radiation (ionisation, excitation), production of 
radicals and peroxides (in case of X-rays and / or electrons), reaction with bio-
molecules (DNA), lesions kinetics and repair of sublethal lesions. The equations 
describing the system (tumour cell population and kinetic dose equivalent model) are 
the following: 
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Here, ( )h   is a function of  representing the kinetics of repair of sublethal lesions, 
given at dose rate R. In the case of first order repair kinetics (as proposed by Oliver 
[7]), the repair rate is linear-proportional to the number of sublethal entities. Since an 
increasing number of experiments indicate a change of the half-time of repair, bi-
exponential or binary repair (including two components of mono-exponential repair) is 
taken into account by several authors [8]. The observation of a fast repair shortly after 
irradiation and a following slower repair rate compared to exponential repair may also 
be explained by a second order process [6]. This implies, that the  - dependent 
function ( )h   in Eq.(1) is given by 2

1( )h     . For the following models, second 
order kinetic is used. 
 The quantity   is related to the dose D and the total dose totD  (= cumulative 
applied dose):  
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2.1 The  - LQ- model formulation 
 
In the  - LQ- model formulation [9], only one tumour population (with the number 
of tumour cells ( )N N t ) is used. Cell killing is described by two radiosensitivity 
coeffients   and  . The system (Eq.1) becomes: 
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At the beginning of an irradiation,   is equal to the initial value (0) . Integration of 
Eq. (3) using the constant value (0)  leads to the surviving fraction: 

1( 2 (0)) DS e     . The initial slope in the logarithmic diagram ( log ln / ln(10)S S ) 
for (0) 0 Gy   for both first order and second order kinetics is / ln(10)    . 
This is in agreement with the commonly used linear-quadratic (LQ) model. 

 In the case of 0  , the quantity   accumulates without outflow. Therefore   

is equal to the accumulated dose: ( ) ( )t D t  . In this case, integration of Eq. (5) leads 

to the classical LQ formalism with 
2( )

0( ) D DN D N e     .  

 For a single fraction with a constant dose rate R , ( )t  tends to an equilibrium 

(which will be reached for t  ). For second order, the equilibrium level is 

/eq R  . For this equilibrium state, Eq. (3) can be solved by separation and 

integration, since   becomes constant ( ) eqt  : ( 2 )
0( ) eq DN D N e      . The 

logarithmic of surviving fraction 0/S N N  is given by ln ( 2 )eqS D     . The 

final slope in a logarithmic plot of the surviving fraction becomes constant: 
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2.2 A kinetic model for induced repair: The - IR- model 
 
The model formulation (- IR- model) is based on two differential equations 
describing the radiation induced reduction of normal tumour cells 1N and the recovery 
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of lethally damaged cells 2N (with the dose rate R and a coefficient for radio-

sensitivity): 
 

  1
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   (5) 
 
The term 2( , )N   describes an additional, dose dependent repair mechanism with a 

characteristic dose equivalent c : 
 

  
2( )

2 2( , ) cN e N          (6) 

 
This approach can be justified by an activation of the additional repair process, which 
occurs for each cell at a different threshold dose [10]. It is assumed, that these 
thresholds can be characterized by a probability distribution with the maximum value 

c . The parameters  and c  can be determined directly from the logarithmic 
diagram (logS) of the surviving fraction 1 1/ (0)S N N ,  by the initial slope: 
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The parameter c can be estimated from the local maximum (shoulder) of log S , if 

low dose hypersensitivity appears. The parameters  and   can be used for fitting 

experimental data. The final slope of the logS – curve is determined by the equilibrium 

of the dose equivalent /eq R  . For this equilibrium condition, the following 

system of first order ODL results  / i ik kd dt N m N  with the matrix ikm : 
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The final slope of the logS – curve is constant and dose rate dependent since the eigen-
values of the system Eq. (5) are: 
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3 Results 
 
Both models can be implemented easily by using graphical model editors such as 
Berkeley Madonna or equivalent. The results of the simulation using Berkeley 
Madonna (Berkeley Madonna Inc.) were compared to experimental data. The 
comparison of the - LQ- model with the in vitro data from Wells and Bedford [11] 
reveals a good fit to the logarithm of surviving fraction of irradiated C3H10T1/2 cells 
(Fig.1) over a wide range of the dose rate, if the kinetic constant   is adapted to the 
dose rate: 2/a R bR c     with 3 3= 1100 Gy /da , 2 -21.4 10  Gyb    and 

-1 -15 Gy dc  . The term 2/a R  is only important at dose rates below 100 Gy/d (= 0.07 
Gy/min). For dose rates above 1500 Gy/d (= 1.04 Gy/min), the curves are lying 
between the curve d in Fig.1 and the curve for the LQ- model. In this area, a good fit 
to the model of Curtis is also reached with bR c   .  
 The - LQ- model was used to fit data from irradiated glioblastoma cells at very 
high dose rate (Fig.2). The parameters were adjusted to the data set produced at the 
highest dose rate. Therefore, the model using a constant  fits the data not very 
adequately at intermediate dose rate (R = 288 Gy/d) but reveals a good fit for the very 
high dose rates (R = 8640 Gy/d and 34560 Gy/d) with a constant value for . 
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Figure 1: Comparison of the  -LQ formulation (second order kinetics, solid lines) with 
experimental data (C3H10T1/2 cells with -10.1366 Gy   and -20.02 Gy  , irradiated 
at different dose rates) from Wells and Bedford [11] and the model of Curtis (dashed 
lines): The dotted lines are at the right side the limit at low dose rate ( log S D  ) and 
at the left side the common LQ-model. 
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Figure 2: Surviving fraction of T98G- glioblastoma cells at different dose rates: For 
the high dose rate (8.64 kGy/d and 34.56 kGy/d), the - LQ- model can fit the 
experimental data with  = 0.03 Gy-1,  = 0.04 Gy-2 and  = 600 d-1; for the 
intermediate dose rate (R = 288 Gy/d), a good fit can only achieved by adapting the 
kinetic constant to  = 45 d-1 (curve b, curve a with  = 600 d-1). 

 
 
 

The kinetic model for induced repair (- IR- model, section 2.2) is able to reproduce 
the surviving fraction in the case of low dose hypersensitivity as observed e.g. for 
irradiated breast cancer cells (Fig.3). Also the distinct behaviour of clonogenic 
survival of apoptotic versus non-apoptotic cell death can be explained by the - IR- 
model. The -IR-model seems to fit a broad spectrum of radiobiological obser-
vations.  
 To investigate the dose rate dependence, the - IR- model was used to fit the in 
vitro data of the T98G glioblastoma cells shown in Fig.2 [12]. In Fig.4, a good fit of 
the experimental data can be achieved by adapting both,   and   to the dose rate. The 
value of parameter   is different for all three dose rates ( 3 -110  d   for R = 288 
Gy/d; 4 -13 10  d    for R = 8.64 kGy/d and 5 -11.6 10  d    for  R = 34.56 kGy/d), 
whereas the kinetic constant   has the same value ( -1 1540 Gy d  ) for R = 8.64 
kGy/d and R = 34.56 kGy/d. Only for R = 288 Gy/d, the value is set to -1 123 Gy d  . 
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Figure 3: Comparison of the proposed - IR- Model with the model of Guirado 

Lllorente et al. [10], the IR-Model and experimental data (irradiated multi cellular 

spheroids of breast cancer MCF-7 cell line [10]); Parameters: -12.5 Gy  , 

0.6 GyC  , -214 Gy  , -1 10.729 Gy min   and -120.833 min  . 
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Figure 4: Comparison of the proposed - IR- Model with experimental data (T98G 

glioblastoma [12]); Parameters: -10.5 Gy  , 1.2 GyC  , -20.45 Gy  ,   and   

are adapted to the dose rate. 
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4 Discussion and Conclusions 
 
The use of a dose equivalent concept leads to a flexible structure of model formu-
lation. Both models are able to fit the observed dose rate dependence of experimental 
data although more experimental data for fitting should be available (especially Fig.2 
and 4). But in both models, the kinetic constant has to be adapted to the dose rate to 
achieve a good fit over the whole range of dose rate. Only for a dose rate above 8.64 
kGy/d = 6 Gy/min, the - LQ- model reveals a good fit with three dose rate 
independent constants. The adaption of the constants to the dose rate in addition to the 
dose rate dependency given by the kinetic model for dose equivalent indicates that 
different mechanism at different time scales contribute to the repair and cell death 
processes. The use of a dose equivalent to describe cellular damages is a simplistic 
approximation of a very complex system, but it allows approaching the dynamic 
system behaviour by a kinetic model structure.  
 In addition to the intracellular processes, the communication between cells are 
important for the tumour (tissue) response (e.g., bystander effect [1,2]). Damaged cell 
do not only repair themselves, but somehow (possibly via cytokines) transmit the 
information about the fact that they are damaged to other cells, probably in their direct 
proximity. This “cross-talk” on the tissue-level is the base for the appearance of 
emergent behaviour, as it is well known from many physical systems, e.g. near phase 
transitions.  
 This seems to be similar to thermodynamics, where a very diverse and compli-
cated microscopic dynamics nevertheless leads to a macroscopic phenomenology 
which is well described in terms such as internal energy, temperature etc. However, 
comparing cellular dynamics with thermodynamics is only sensible on a higher level 
of abstraction. Cellular processes are generically not in equilibrium, whereas the 
concepts of thermodynamics only apply to equilibrium situations (in some cases 
stationary processes, which are globally not in equilibrium but allow sensibly speaking 
of local equilibria, are also well described by thermodynamic quantities). But there are 
structural similarities too: Thermodynamic systems are most often described by 
surprisingly few parameters and this is also a tacit (and experimentally justified) 
assumption of cellular modelling, probably caused by the fact that cellular as well as 
thermodynamic systems (e.g. phases) exhibit robust emergent behaviour. Today, the 
observables of cellular systems are mostly chosen by criteria of experimental 
accessibility. In future, further effort should be spend to identify system parameters 
that represent the true dynamics of cellular systems as precise as possible. There may 
be a price to pay, because according measurement may be difficult. The benefit, 
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however, reliable prediction of dynamics using comparably simple models, may bear a 
considerable potential for anticancer treatment.   
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