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When customer inquiries arrive at a call center, management’s routing rules bear the responsibility
for assigning service agents to handle them. These rules must balance the need to minimize cus-
tomer waiting time with the desire to match customers with the most skilled agents. A myopic rule
for skill-based routing would consider an agent’s skill level to be fixed, as determined by formal
training or certification. However, the routing rule itself has an impact on skill levels: through
on-the-job learning, the development of the agents’ expertise depends on the calls they take.

In this paper we develop quantitative tools that allow us to reason about the process of acquiring on-
the-job expertise by call center agents. First, we show how to link routing decisions to expertise
level outcomes. We then define utility functions that depend on that expertise, and show how
polices of evenly shared routing and extreme specialized routing affect those utilities. We use
these utilities as metrics in an analysis of how to optimize expertise development while meeting
service level targets. Finally, we introduce a measure of forced task sharing, and describe how it
shapes the distribution of skills among the workforce of agents. Empirical data that describe the
distribution of customer arrivals among task types guides our analysis.

Key words: call center, routing, expertise, learning, forgetting, turnover, nonlinear optimization,
knowledge management, workforce planning

1. Introduction

1.1 Expertise in a Call Center Setting

A major influence on a customer’s satisfaction at a call center is the knowledge level of the agent

who takes their call. Knowledge management, in particular maintaining or increasing the cumula-

tive knowledge of the agents, is therefore a key issue for ensuring service quality. This is especially
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true when the call center operates within dynamic markets, and agents are required to keep pace

with changes.

For the operational management, on the other hand, the knowledge of the employees is usually

treated as exogenous to the service delivery process. Knowledge is considered to be a given and

fixed resource, and is treated as such for routing and call assignments. This makes sense when

all training happens off-line, but does not account for the case where knowledge and expertise are

actually gained on-the-job through the service process itself. If we assume that learning-on-the-job

takes place, then the operational rules have an impact on knowledge, and knowledge is therefore

an endogenous rather than an exogenous variable. In particular, routing policies determine which

agents work on which jobs, and thus may have a major impact on the learning of the agents and

their expertise level attained. In our paper, we study how routing might influence the knowledge,

how changing knowledge levels will affect customer experience, and how knowledge management

and routing can be treated together.

We model the expertise of a service agent with simple dynamic equations, reflecting the es-

sential features of gaining expertise through experience (learning) and lowering expertise through

absence (forgetting). We find that, in the long run, the expertise level of an agent increases as the

arrival rate to this agent increases. That is, a busy agent will maintain a higher level of expertise

and therefore give the customers better average service.

As yet a third factor driving the results, frequent turnover will reduce the average expertise

level within the firm. In practice turnover may indicate the process of agents quitting and new

agents being hired; or, it may indicate changes in task content due to changes in demand patterns,

which may make prior experience irrelevant. We introduce a form of discounting due to turnover

to our model as well.

In a multi-agent environment, the arrival rates to each agent are influenced by the routing rules

employed at the call center. Different routing rules may lead to different distributions of expertise,

and therefore to different customer quality experiences. We describe how to scale up our analysis

of an agent’s on-the-job learning to systems with multiple agents and task types, and to design

routing rules that meet management’s goals for agent expertise in this setting.

1.2 Service Quality, Learning, and Turnover in Call Centers

A key paper that helps establish this area of research is by Pinker and Shumsky (2000). They

analyze a Markov chain system model of learning and turnover that includes two types of specialist

workers, and a set of cross-trained or flexible workers that can perform either task. Each workers
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service quality improves with tenure, though specialists always provide the highest service quality.

The optimal staffing arrangement, giving both high agent utilization and high average expertise,

turns out to include a mix of specialists and flexible agents. They also specify how the staffing

solution changed along the dimensions of arrival load and expertise development rate (or learning

rate). High learning rates favor more specialists in large systems, and a precise, optimal mix

of flexible and specialized agents in small systems. By contrast, low learning rates favor a staff

mix with more flexible agents—the content of the work is simple enough that it can be mastered

quickly, so agents can take on more tasks. The authors recommend the use of forgetting models in

future work, and we aim to build on their results in this paper by including forgetting and learning

together.

Gans and Zhou (2002) model learning and turnover effects using a Markov decision process,

and demonstrate that the optimal hiring policy for each state of a firms agent roster is a “hire-up-to

policy similar to the “order-up-to policies from the supply chain management literature. Whitt

(2006) explores ways to characterize the employee retention distribution for call center agent pop-

ulations. Improved retention results in a higher average expertise of agents in the center, because

expertise improves with tenure. Among other findings, decreasing distributions such as the nega-

tive exponential are noted to be reasonable first approximations to real retention distributions. This

is because in general employees are most likely to leave within a short time of starting, and the

probability of leaving then decreases as tenure grows.

We share a key assumption with these three previous papers: we assume service quality, de-

noted here by variable X , improves with tenure; or more precisely with cumulative production.

But we do not specify precisely what improved quality means to the customer. This allows us to

reason about the relationship of routing rules and expertise in a general way that can be adapted

to fit specific cases. In an application of our results to call center agent data, X may stand for

the handle time of a call, which should decrease with expertise; or to the first call resolution rate

(FCR), which should increase with experience. See Vericourt and Zhou (2005) for a discussion

of the FCR metric. If SERVQUAL-type survey data is available, X may represent a measure of

customer satisfaction (Parasuraman et al., 1988). Froehle (2006) conducts a statistical analysis of

such data, and finds that agent preparedness, subject matter knowledge, and thoroughness are most

important to customers’ perceptions of service—three qualities that can be expected to increase

with experience. Froehle also describes the alternatives modern agents have for communicating

with customers, such as email and instant messaging. The customer call center is now rightly

termed a customer contact center as well. We will use the terms interchangeably.
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Our work has been guided by results in the literature from several areas of service operations

research. For more on learning and turnover in call centers, see Bordoloi (2004), Gans and Zhou

(2003), and Zohar et al. (2002). For an in-depth background on call center planning and operations,

see Aksin et al. (2007), Brown et al. (2002), Cleveland and Mayben (2000), Gans et al. (2003),

Hasija et al. (2005), Iravani et al. (2007), and Koole (1997). Due to the inherent complexity of

call center operational models, high quality simulations are becoming important (Avramidis and

L’Ecuyer, 2005).

For related results on learning and forgetting at work, Shafer et al. (2001) present a detailed

study of empirical learning and forgetting data in an industrial application with worker service

times roughly equivalent to call handle times in a call center. Badiru (1992) presents a survey of

applied learning models, and Nembhard and Osothsilp (2001) do the same for forgetting models.

Sikström and Jaber (2002) explore new ways of measuring the impact of production breaks on pro-

ductivity. Sayin and Karabati (2007) develop a detailed optimization model for solving a rostering

problem with learning and forgetting effects in a corporate setting involving several departments.

A similar problem is explored by Eitzen et al. (2004), who note that forgetting effects require that

worker skill levels be maintained through repetition in work assignments.

We do not discuss the details behind learning and forgetting effects here, but there is a body of

work from the behavioral sciences that supports our operational models. See especially Globerson

and Levin (1987), Howick and Eden (2007), and Schilling et al. (2003). Behavioral scientists see

new opportunities opening up now for joint work with those in the operations field, in order to

apply the growing catalog of behavioral results to service operations (Bodreau et al. 2003).

There is a growing set of work describing call center outsourcing contracts, and the competitive

milieu faced by call center operators—see for example Aksin et al. (2008), Hasija et al. (2008),

Ren and Zhou (2008), Shumsky and Pinker (2003). The ultimate goal of this research is to provide

new avenues for productivity growth in call center operations, so that savvy operators may drive

more profitable, or lower cost, service contracts, such as described in Reis (1991). Although in

practice measuring and acting on learning curves requires care, productivity gains have contributed

to business success in a variety of settings (Ghemawat 1985).
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2. The Dynamics of Agent Expertise

2.1 Finding the Steady-State Value of Expertise

Consider the evolution of expertise in an agent answering calls to a call center. Let the expertise

X(t) of the agent at time t be on a scale 0 ≤ X(t) ≤ 1, where X(t) = 0 indicates a novice,

and X(t) = 1 corresponds to an expert. Define the average time between completed jobs to

be τa, including the receiving and processing of a job, followed by some time until the next job

arrives. The arrival rate of customers to the system is λ = 1/τa. We assume that the agent learns

while processing the job (on-the-job), thus increasing its expertise level X(t), and forgets while not

processing, leading to a decrease of X(t).

In our learning model, the agent’s expertise by processing one job increases on the average

through

X(t) 7→ X(t) + α(1−X(t))

where α is a learning parameter. That is, the experience gain is proportional to (1 − X(t)), and

so becomes geometrically smaller as X(t) approaches expert status. In the absence of forgetting,

an agent will move from novice to roughly half of her maximum possible level by completing 1/α

jobs.

Skills need to be maintained through reinforcement; in the absence of work to occupy an agent,

forgetting ultimately reduces the expertise of the agent to zero (novice level). We assume that

forgetting occurs at a continuous rate β, so that for a period of length τa, the expertise is discounted

by e−βτa . Taking learning events and continuous forgetting together, we get

X(t + τa) = (X(t) + α(1−X(t))e−βτa (1)

Learning is designed to be a geometrically decreasing concave function of time, and the forgetting

exponential function is convex in time for positive τa, which holds for the cases we consider. Given

these simple dynamics, asymptotic behavior of X(t) will tend toward the fixed point X∞ of this

equation, with 0 ≤ X(t) ≤ 1. The smaller τa (i.e. the more jobs per time unit the agent is

handling), the higher the asymptotic expertise level X∞, and vice versa.

X∞ =
α

eβτa + α− 1
(2)

The final detail we will include in the expertise model is a limit on forgetting. If we assume that

forgetting only occurs when the agent is idle, we may modify the definition of τa in Equation (2)
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Figure 1: An illustration of how on-the-job experience is developed.

to be the expected time τI that the agent is not actively helping customers.

τI =

(
1

λ
− 1

µ

)
, where

1

λ
≥ 1

µ
(3)

To keep the sign of the exponent in the forgetting term negative, τI must be positive. If the

agent’s utilization is greater than 100%, or λ > µ, then let τI be zero, and let the forgetting

function be e0 = 1.

Then the steady-state value of expertise becomes:

X∞ =
α

eβτI + α− 1
. (4)

From prior studies of learning and forgetting rates, and our own observations of call center

data, we expect a reasonable range of interest for parameter α to be between 0.05 and 1e-4; and we

take β ≤ α. See Appendix 6.1 for specifications under which this expertise function is concave.

2.2 Mapping Arrival Rates to Expertise Levels

Figure 1 depicts the evolution of these expertise equations over time: on-the-job experience grows

through serving a sequence of customers. Expertise is increasing in an agent’s relevant cumulative

production. (Badiru 1991, Shafer et al. 2001). As the top diagram shows, a true accounting of the

knowledge-building process would involve a highly nonlinear, complex function. We simplify this

function in our stylized model by awarding an expertise increase at the time when a customer ar-

rives, where the size of the boost depends on the proximity of current expertise X(t) to asymptotic

expertise X∞.
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Figure 2: The asymptotic value of expertise. The key advantage of our formulation: expertise becomes a continuous
function of the routing proportion p. Here α = 2e− 3, β = 8e− 4, µ = 10, λ = 1, and p = 0.5.

The increase is held constant during the service time; when service is done and the customer

leaves, that increase is allowed to gradually diminish according to our negative exponential for-

getting function. This is one type of function among several that have been used to fit the mea-

sured effects of forgetting (Nembhard and Osothsilp 2001); we apply it here for its simplicity and

tractability.

The bottom of Figure 1 depicts the trend of expertise over time. Decisions by individual cus-

tomers about when to call are unpredictable—customer arrivals appear random to the agent. A

longer interarrival time will incur more forgetting, a short one less, but over many customer visits

the variations average out and X(t) settles to X∞ of Equation (4).

Figure 2 illustrates a key feature of our expertise formulation: we have established a link be-

tween the arrival rate of jobs to an agent and her expertise level. Management can take advantage

of this linkage to design routing rules that optimize the distribution of expertise among the work-

force. The succeeding sections will discuss criteria for optimizing this distribution.

Note that an analysis of system capacity, the variable lambda (λ) traditionally stands for an

arrival rate. Here we let it be the rate coming into the entire system, which may employ many

agents. Then the rate to any single agent will be a fraction of λ. Let this fraction of λ arriving

at a single agent be denoted by p, with 0 ≤ p ≤ 1. Then we may modify the idle time from

Equation (3) to be:

τI =

(
1

pλ
− 1

µ

)
(5)

Management controls the proportion p for each agent through routing rules, hence controlling
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the intensity of on-the-job learning experiences, and ultimately the agent’s expertise level. We

make this linkage explicit by writing the asymptotic expertise level as X∞(pλ). Where the value

of λ is understood to be a certain value, we can just write X∞(p). Note that although X(t) was

a function of discrete interarrival times t, X∞(pλ) may be a continuous function of a continuous

real variable p, and is thus convenient for analysis.

In Figure 2, the left side shows X(t) increasing as customers are served, until the asymptotic

value X∞(pλ) is reached—the horizontal line at about 0.63. This asymptotic limit maps to a single

point on the plot at the right. The right side shows the value of X∞(pλ) as the routing proportion

p to this agent is swept from zero to one.

2.3 The Asymptotic Expertise Level Discounted for Turnover

Now we have an expression for the asymptotic expertise level of an agent that depended on routing

rule proportion p, customer arrival rate λ, service rate µ, learning parameter α, and forgetting

parameter β. However, in a service organization such as a call center, new agents join and veteran

agents leave on a regular basis. Furthermore, product or policy changes that affect customers may

cause the content of their inquiries to change, rendering an agent’s current expertise obsolete. We

refer to these interruptions in expertise development as turnover events.

In this section, the model records occasional turnover events as sudden losses of all expertise

accumulated since the agent first started. For simplicity, we adopt the convention that the workforce

remains at a constant size, and workers are either rehired or retrained (Pinker and Shumsky 2000,

Gans and Zhou 2002, Whitt 2006).

Figure 3 shows two plots of expertise over time, with turnover events occurring at random

intervals. The top figure uses an extreme routing rule, where one agent gets all the work; the routing

proportions are p1 = 1, p2 = 0. The bottom figure uses an even routing rule, p1 = 0.5, p2 = 0.5.

(Training and retraining periods are omitted.) It is evident that turnover events may prevent agents

from reaching their limiting expertise values—in this example the average system expertise over

time is closer to the midpoint of the experience curves, as indicated by the horizontal lines.

We can discount the asymptotic value of expertise in the presence of turnover events to reflect

this effect, as follows. Let the variable n count each job completed; let θ(p)− = e−β(1/(pλ)−1/µ);

and let θ(p)+ = e+β(1/(pλ)−1/µ) = e+βτidle , where τidle = (1/(pλ)− 1/µ).Then we can rewrite the

previous asymptotic value from Equation (4) as
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Figure 3: Time series plots of expertise versus time. Top: a policy of extreme routing. Bottom: a policy of even
routing. The mean expertise in the system composed of one queue and two agents is given by the horizontal line in the
middle of each plot. Sudden drops in expertise are due to randomly generated quitting events. We find that the results
of Section 3 for utility function optimization still hold when turnover events are included in the model.

Xn+1 = (Xn − α · (1−Xn)) · θ(p)− (6)

X∞ =
α

θ(p)+ + α− 1
. (7)

By letting γ = (θ(p)− − αθ(p)−), and dn = X∞ −Xn, we can use Equation (7) to rewrite (6)

as

(X∞ −Xn+1) = γ · (X∞ −Xn) (8)

dn+1 = γ · dn (9)

If we let d0 = αθ(p)−, then X∞ = d0

∑∞
n=0 γn.

Define q be the probability that an agent quits or requires retraining during the interarrival

interval (n, n + 1]; let q be exponentially distributed and independent on each interval. Then we

can define an expertise value Xp,q that also depends on q.

Xp,q = d0

∞∑
n=0

(γ · (1− q))n

=
α

(θ(p)+ + α− 1) + q − qα

=
α

(e+βτidle + α− 1) + q(1− α)
(10)
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To see how q discounts expertise through Equation (10), consider these cases. If q = 0, we recover

the expertise value without turnover, X∞. If q = 1, Xp,q = αθ(p)−, the value after serving one

customer and quitting. For τidle = 2, and q, α, and β all set to 1e-3, we have X∞ = 0.33, but

Xp,q = 0.25.

In a contact center, the expected value of elapsed time between turnover events, say Tq, would

be estimated as an average over all agents. Since q is specified per interarrival interval, its distribu-

tion with respect to Tq must be calibrated for each agent’s unique, routing-dependent interarrival

time. Assuming turnover events occur as a Poisson process within each interval, the probability

that more than zero turnover events occur is q = 1− P ( 0 events | Tq ), or q = 1− e−1/(pλTq). For

a typical call center Tq will span hundreds to many thousands of customer service encounters, so q

will be a small value.

We will forego presenting turnover results in Section 4 for multi-agent, multi-task scenarios.

We only note here that our test results using Equation (10) instead of Equation (4) in those sce-

narios gave the same solution structure, but at appropriately lower levels of asymptotic expertise.

However, an analysis of turnover effects using asymptotic expertise levels has certain limitations

that we will discuss more in Section 5.

2.4 Expected Value of Expertise When Arrivals and Service are Exponen-
tially Distributed

In Section 2.1 we derived a general expression for the asymptotic expertise level, Equation (4),

that did not specify a distribution for the arrival rate λ or for the service rate µ. Here we apply

the assumption underlying the most commonly used system capacity model, and take λ and µ

to be exponential random variables: let interarrival times be ∼ Exp(λ), and let service times be ∼
Exp(µ). Then we determine the expected value of expertise as a function of these random variables.

The resulting expressions provide insight, and may be used when arrivals and departures from a

server are Poisson.

Let τa be the interarrival time of customers to this agent. Then τa ∼ (pλ)e−pλt.

10



X(n + 1) = (X(n) + α · (1−X(n))) · e−βτa

E[X(n + 1)] = (E[X(n)] + α · (1− E[X(n)])) · E[e−βτa ] (11)

E[e−βτa ] =

∫ +∞

τa=−∞
e−βτaλpe−λpτadτa

=
−λp

β + λp

∫ +∞

τa=0

e−τa(β+λp) · (−1) · (β + λp)dτa

=
λp

β + λp
(12)

E[X(n + 1)] = (E[X(n)] + α · (1− E[X(n)])) · λp

β + λp

In the long run, E[X(n)] settles down to the asymptotic value of expertise, E[X(n + 1)] =

E[X(n)] = X∞(p). Letting θ = λp
β+λp

, we have:

E[X(n)] = (E[X(n)] + α · (1− E[X(n)])) · θ

= θ(E[X(n)] + αθ − αθE[X(n)]

=
αθ

1− θ + αθ

=
αλp

β + λp− λp + αλp

E[X(n)] = EX =
αλp

β + αλp
(13)

To review, Equation (13) gives the asymptotic value of expertise when the arrival and service

events are Poisson processes; the interarrival time between customers has a negative exponential

distribution with rate pλ; and µ is insignificant compared to pλ, as when the encounter takes

a few minutes, but the time between calls is measured in days. We expect the routing proportion

0 ≤ p ≤ 1 to be fixed under management’s control. Note that expertise tends towards the maximum

value 1 when αλp � β.

The derivations of discounted expertise, Equations (6) to (10), and E[X(n)], Equations (11) to

(13), can be applied in a straightforward way to yield expertise level equations for other cases as

well. Equation (13) when discounted for turnover is given by

E[Xp,q(n)] =
αλp

β + αλpq(1− α)
. (14)

Let φ = p2λ2 + pβλ + pµλ. Then when the service time is significant and affects the length of

the idle time, the expected value becomes

E[Xµ(n)] =
α · φ

α · φ + βµ
. (15)
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See Appendix 6.2 for a complete derivation of Equation (15). Finally, to determine expertise

when including service time and discounting for turnover, Equation (15) becomes

E[Xp,q,µ(n)] =
α · φ

µβ + φ · (q + α− q · α)
. (16)

Note that large values of β and µ increase the size of the denominator, and so decrease expertise.

In this model, service that is extremely fast and efficient may increase the length of the idle time,

and actually incur a greater loss of expertise due to forgetting.

3. Expertise Utility Functions of the Customer and the Firm

3.1 The Customer’s Utility Uc, and the Supervisor’s Utility Us

The observation of a correlation between arrival rates and expertise leads to the natural question of

how a call center should route calls to different agents. Consider the situation where all incoming

jobs are divided between two agents, A1 and A2. Take λ to be the arrival rate of all jobs into the

system. Parameter p1 is the fraction of jobs routed to A1, and (1− p1) is the fraction routed to A2.

We see that the value of p1 chosen by our decision rule thus determines the two asymptotic

expertise levels of the agents—and we can introduce the notation X1(p1) and X2(p1) to denote the

dependence of asymptotic expertise on p1. Equations (4), (13), or (46) may all be used to compute

X(p) here, but in order to take the most general approach we assume Equation (4) unless otherwise

stated. Given this situation, we would like to know how one might select the ideal value for p1.

Customers and firms have different objectives with respect to knowledge of the agents. Cus-

tomers may prefer to have the maximum available service expertise; we will call a utility function

that maximizes this objective the customer’s utility, or Uc. This is a function of agent expertise as

determined by the routing policy, so we will indicate that dependence using the notation Uc(p).

Management, particularly those in charge of shift staffing, are on the other hand also interested

in the overall knowledge and expertise available within the company. For example, having more

than one trained agent mitigates the risk of one agent leaving (and taking their expertise with them).

We refer to a utility function that maximizes the experience available as the supervisor’s utility,

or Us(p). Having agents with similar knowledge level leads to quality assurance whereby each

customer receives equivalent service, which might be desirable. This argument favors Us(p).

Figures 4 and 5 illustrate the trade-off between customer and supervisor perspectives. As a

simple example, let the customer’s utility be Uc(p1) = E[X], where E[·] denotes the expectation
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Figure 4: The customer’s utility function Uc for the two agent case. Note the convex shape, with two optimal
solutions residing at extreme values of the routing proportion p: p = 0, or p = 1. The vertical lines represent possible
system constraints that limit the maximum utilization of an agent. Note that with the constraints, extreme points are
still optimal, but the extreme values have been reduced.

Figure 5: The supervisor’s utility function Us for the two agent case. Note the concave shape, with the optimal
solution residing at the value where the routing proportions are equal: p1 = p2 = 0.5. The vertical lines represent
possible system constraints that limit the maximum utilization of an agent. Note that with the constraints, the middle
or even routing point is still optimal, and its value has been unaffected.

value; following the notation used in the figure, this is E[X] = p1X1(p1) + (1 − p1)X2(p1). Let

the firm’s utility be Uf (p1) = x1(p1) + x2(p1), corresponding to the total knowledge of the firm.

At the left, Figure 4 shows the asymptotic expertise attained by each of the two agents over

the range of p1. Here the forgetting rate for all pairs of curves is β = 0.001, and the learning

rates from the top pair to the bottom pair are α = 0.011, 0.002, and 0.0008—consider these fast,

medium, and slow learning cases, respectively. The curve for the first agent grows with p1, similar

to the right side plot of Figure 2 in Section 2. As expected, the asymptotic expertise curve for agent

2 decreases in p1. The right-hand plot shows the resulting customer’s utility.

The left-hand side of Figure 5 repeats the two-agent expertise plot for reference, and the right-

hand plot shows the supervisor’s utility. Compare the plots of Uc and Us, and note that the maxi-

13



Figure 6: (i) Temporal evolution of the expertise levels xi(t) for the two agent case when always choosing the agent
with maximum expertise (solid line) or splitting the jobs evenly between the agents, policy FS (dashed line). (ii)
Temporal evolution of policies BQ (solid line) and FS (dashed line).

mum of the supervisor’s utility Us is a minimum of the customer’s utility Uc. Further, note that if

the firm chooses solely to increase the utility function for the customer, it destroys its own cumu-

lative expertise.

For illustrating these two alternatives, assume that we have two agents with X1(0) = 0.58,

and X2(0) = 0.25 for t=0, and consider the medium learning rate. Maximizing the customer’s

utility is equivalent to routing all jobs to agent 1 (p1 = 1) whose expertise will increase while the

expertise of agent 2 will decrease. Asymptotically, agent 1 will have an expertise of x=0.82, while

the knowledge of agent 2 is zero. In Figure 6 (i), the temporal evolution is shown. In contrast,

when choosing p1 = 0.5, the company ends up with two equally trained agents.

In Figure 6 (ii) we compare how the expertise level of two agents will evolve in an M/M/2

queueing system with an average utilization of 28%. Each policy is work conserving, in that a

call will never wait while an agent is free. They differ in that under best quality (BQ), if both

agents are available the call is taken by the more proficient agent. This leads to p1 = 0.68. In fair

sharing (FS), the two agents will either alternate or be randomly assigned such a call with equal

probability. As would be expected, BQ leads to one relative expert and one relative novice, while

FS leads to two equally proficient agents.

The two-agent case thus provides an interesting insight: for maximizing the sum of the knowl-

edge in the firm, it is better to route to the less experienced agents in order to give him or her

the possibility to learn. This result is largely independent on the form of the learning-forgetting

curves—as long as the increase of expertise ∆X by learning-on-the-job is a concave function as

a function of X (less increase at higher expertise level), the gain of cumulative knowledge is al-

ways larger when routing to the less experienced agent. Thus, under a knowledge management
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perspective, a balanced routing is always preferable.

3.2 Maximizing Utilities in the Many-Agent Case
3.2.1 Extreme Routing Optimizes the Customer’s Utility

The following result says a routing rule that encourages specialization will maximize the expected

value of expertise E[X], and hence the customer’s utility function Uc = E[X]. In this section, we

prove the N -agent case where the following conditions hold.

1. Let the asymptotic expertise value Xi of each agent i be a concave function of the proportion

of customer traffic pi that is routed to that agent. Let Xi ∈ R+, and 0 ≤ Xi ≤ 1.

2. We write Xi(α, β, τa(pi), τs) to indicate the dependence of Xi on four parameters. The

learning parameter α, the forgetting parameter β, and the mean service time τs are fixed

values that are the same for all agents. Thus all agents have identical learning/forgetting

curves.

3. The average interarrival interval τa(pi) = (piλ)−1 is a function of fixed system arrival rate

λ and routing fraction pi, with pi ∈ R+, and 0 ≤ pi ≤ 1. Here pi is the only independent

variable, so we may write Xi(pi), and examine the properties of Xi(pi) as pi is varied.

4. The first and second derivatives of Xi(pi) with respect to pi exist.

5. Those derivatives satisfy the relationship 2X ′
i(pi) + pi ·X ′′(pi) ≥ 0.

6. An asymmetric routing rule is in force that routinely routes more traffic to one of the agents,

say agent j.

Theorem 3.1. Under the conditions stated above, the expected value of expertise seen by a cus-

tomer, E[X], is decreased in steady state when work is transferred from the agent with the highest

expertise to an agent with less expertise.

Proof. Let g(pi) = pi ·X(pi). Then the expected value of expertise seen by an arriving customer

in this system’s steady state, Es[X], is given by

Es[X] = p1 ·X(p1) + p2 ·X(p2) + ... + pnX(pn). (17)

= g(p1) + ... + g(pn) (18)
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Recall that agent j receives a higher proportion of jobs than any other agent, so pj > pi,

∀ i 6= j. Now, perturb the system to a new state using the routing rule to remove a small

proportion of arrivals ∆p from agent j’s assignment, and add those arrivals to some other agent i’s

assignment. The new value of Es[X], or Enew[X], becomes

Enew[X] = g(p1) + ... + g(pi + ∆p) + g(pj −∆p) + ... + pnX(pn) (19)

Now we can analyze the difference ∆E = Enew[X] − Es[X]. If this difference is negative,

the expected value of expertise dropped due to the perturbation. We can construct a first-order

approximation to ∆E as follows:

gi(pi + ∆p) ≈ g(pi) + ∆p · g′(pi) (20)

gj(pj −∆p) ≈ g(pj)−∆p · g′(pj) (21)

∆E ≈ ∆p · (g′(pi)− g′(pj)). (22)

(Note that X(p) is concave, so X ′′(p) < 0; because p ≥ 0, we have that p ·X ′′(p) ≤ 0.) Now

g(p) = p ·X(p), and g(p) is convex if g′′(p) ≥ 0, so we can write:

g′′(p) = 2X ′(p) + pX ′′(p) ≥ 0 (23)

At the beginning we stipulated that Equation (23) was satisfied by X(p). Therefore Equa-

tion (30) is negative due to the change in routing assignment ∆p, and the theorem is proved.

Here is an example of the application of Theorem 3.1 using the asymptotic expertise function

developed in Section 2.

Lemma 3.2. The expertise function X(p) given in Equation (4) satisfies the conditions of The-

orem (3.1), under parameter ranges of interest in modeling learning and forgetting phenomena

from Appendix 6.1. Therefore, for this function, E[X] is maximized by extreme asymmetric routing

distributions.

Proof. Let the forgetting effect be given by θ(p) = eβ·((p·λ)−1−(µ)−1 . Now, we can apply the con-

vexity test of Equation (23) to our expertise function X(p).

g′′(p) ≥ 0

2X ′(p) + pX ′′(p) ≥ 0
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Expanding this using X ′(p) and X ′′(p) from Appendix 6.1 gives:

2αβθ(p)

p2λ(θ(p) + α− 1)2
+

2pαβ2θ(p)2

p4λ2(θ(p) + α− 1)3
− 2pαβθ(p)

p3λ(θ(p) + α− 1)2
− pαβ2θ(p)

p4λ2(θ(p) + α− 1)2
≥ 0.

Algebraically this reduces to the expression

θ(p) ≥ α− 1 (24)

eβ·( 1/(p·λ)−τµ) ≥ α− 1 (25)

Note that by construction α < 1, and (p ·λ)−1 ≥ τµ; and so the left-hand side of (25) is greater

than zero. Thus relation (25) will always hold for our asymptotic expertise function X(p).

From the observations above and relation (30), we know that transferring some work ∆p from

a more proficient agent to a less proficient agent will always produce a negative change in E[X].

3.2.2 Even Routing Optimizes The Supervisor’s Utility

Here we alter Theorem 3.1 slightly to show that even routing is optimal for the supervisor’s utility,

Us(p). Let the same six preconditions hold as in Section 3.2.1.

Theorem 3.3. When the firm’s agents have an asymmetric distribution of expertise, then the sum

of asymptotic expertise in the firm, S[X], is increased when work is transferred from an agent with

the highest expertise to an agent with the lowest expertise.

Proof. The sum of asymptotic expertise present in the firm, S[X], is given by

S[X] = X1(p1) + X2(p2) + ... + Xi(pi) + ... + Xj(pj) + ... + Xn(pn) (26)

We start with agent j receiving a higher proportion of jobs than any other agent, so pj > pi,

∀ i 6= j. Now, perturb the system to a new state using the routing rule to remove a small

proportion of arrivals ∆p from agent j’s assignment, and add those arrivals to some other agent i’s

assignment. The new value of S[X], or Snew[X], becomes

Snew[X] = X1(p1) + X2(p2) + ... + Xi(pi + ∆p) + ... + Xj(pj −∆p) + ... + Xn(pn) (27)

Now we can analyze the difference ∆S = Snew[X] − S[X]. If this difference is positive, the

sum of expertise in the firm increased due to the perturbation. We construct a first-order approxi-

mation to ∆S as follows:
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Xi(pi + ∆p) ≈ Xi(pi) + ∆p ·X ′
i(pi) (28)

Xj(pj −∆p) ≈ Xj(pj)−∆p ·X ′
j(pj) (29)

∆S ≈ ∆p · (X ′
i(pi)−X ′

j(pj)). (30)

Note that Xi(pi) and Xj(pj) are concave functions that only differ in the independent variable

p, and pi < pj . Thus X ′
i(pi) > X ′

j(pj), and Equation (30) is positive due to the change in routing

assignment ∆p. This proves the theorem.

Lemma 3.4. Us(p) is maximized by equal routing to all agents.

Proof. Consider the sum of the expertise of a finite number of these agents who begin with an

asymmetric distribution of expertise. That sum grows as the routing rule designer repeatedly im-

plements routing changes as described in Equation (27), always taking away ∆p from the agent

with highest expertise, and giving it to the agent with the lowest expertise. After all possible

changes are made, having increased S[X] with each perturbation, there is no longer an agent with

a higher expertise to choose from, and we find that S[X] has been maximized by an even distribu-

tion of routing: pi = pj ∀ {i, j}.

Lemma 3.5. When asymptotic expertise is given by X∞(p) from Equation (4), S[X] is maximized

by equal routing to all agents.

Proof. The expertise function X∞(p) given in Equation (4) satisfies all the conditions of Theo-

rem (3.3), and in particular it is concave under the parameter ranges of interest in modeling learn-

ing and forgetting phenomena from Appendix 6.1. Therefore sums of type S[X] that are composed

of expertise functions of type X∞(p) are maximized by equal routing to all agents.

4. Managing Expertise and Capacity in Contact Centers

In the day-to-day operation of a customer contact center, providing sufficient staffing levels of

trained agents to handle call demand within contracted customer waiting time limits must be the

primary concern. Skill development through on-the-job learning unfolds slowly, and is necessarily

seen by line managers as a secondary priority to keeping customer waiting time low. Here we

apply the theory developed in previous sections together with nonlinear optimization to explore
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the interaction of expertise and capacity management goals: how much flexibility do we have in

specific situations to shape the distribution of our agents’ expertise? Given that flexibility, what is

the optimal distribution?

Consider the capacity of a contact center to be the number of trained agents able to handle the

incoming flow of customer traffic. If the traffic forecast is roughly correct, an M/M/C queueing

system model gives a useful approximation of the waiting time performance. An M/M/C system

inherently follows the supervisor’s utility, Us: every agent on average receives an equal share of

the incoming workload.

In cases where we desire to improve the customer’s utility Uc, we need to introduce a higher

degree of task specialization within the system—to disaggregate the incoming job stream into

subsets based on content, and route subsets of jobs to particular subgroups of agents. Yet this

violates the assumption in the M/M/C model, and makes the waiting time analysis difficult. It also

makes the waiting time worse, if the mean service times are constant. In order to specialize in a

subset of the tasks, an agent must refuse to accept call types outside of his purview, and that may

reduce the total capacity of the contact center. This may even force the agent to be idle if no calls

of his assigned types are present. Thus the unfortunate side-effect of increasing the specialization

of agents’ work assignments is an accompanying increase in agent idle time, and customer waiting

time.

As Pinker and Shumsky (2000) point out, the specialization versus cross-training trade-off

varies according to the size of the organization. Very large centers with many customers have

enough traffic to keep focused specialists busy. Small contact centers need cross-trained workers,

and when learning rates play a significant role, it becomes important to optimize the blend of

cross-trained and specialized workers.

Even in large centers, however, small groups of agents may be assigned ownership of specific

customer inquiry types based on content. Therefore, optimizing expertise through smart routing

rules may still benefit large centers, because with respect to work content, they may actually be

a collection of small independent departments, each handling unique tasks, all under a common

administrative umbrella.

Another property of knowledge-intensive contact centers is that agent utilization is surprisingly

low. For high-end financial services firms we studied, the mean utilization of about 5,000 workers

was between 30% and 40%, depending on which one of several geographically dispersed facilities

the agent belonged to. This assumes eight-hour work shifts, and five-day work weeks. There

are various reasons for lower utilization, including staff provisioning for peak traffic times, and
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Figure 7: Test pattern of arrival rates for different job classes. This distribution is shown in Figure 11 as Case C.
There are five job classes here, or learning dimensions, with arrival rates λj as shown. The service rate of each agent
was set to µ = 1. All arrival and service events are assumed be Markovian, with arbitrary time units.

automation that guides many customers to prerecorded answers. Note that in a low-utilization

center, the balance of agents’ time is occupied by background tasks, such as processing mail or

email, research, updating web site answers for accuracy, and so on. Low utilization does not imply

wasted time.

In addition, of course, there are peak periods when agents are fully utilized; but overall this

indicates that there is a significant fraction of time when a customer arrives, and there is a choice

of several agents to whom we may route the inquiry. To optimize the distribution of expertise

among our agents, we take advantage of this opportunity to choose, and thus route customers to

agents in a manner that develops and maintains expertise consonant with management’s expertise

development goals.

Here we define the optimal assignment with an objective function based on expertise—either

Uc or Us—and then constrain it using information about the system’s capacity.
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Figure 8: Left: details of the routing assignments for seven agents, using Uc as the routing objective. Each pie chart
gives the proportion of the arrival rate of type j jobs assigned to agents 1 through 7. The arrival rates for the five types
are shown in Figure 7. The arrows from queue to agents are drawn for one of the types, and the reader should imagine
that five overlapping sets of arrows are present. Rates for types 1 and 2 are large, requiring all agents to share those
tasks. Note that forced task sharing was not invoked for contact types 3, 4, and 5, allowing all of those customers to be
routed to specialists under Uc. Right: the routing assignments using Us as the objective. Note that all job types were
routed in even proportions to all agents.

4.1 A Nonlinear Programming Approach with Sharing and Utilization Con-
straints

max
pjk

Uc =
J∑

j=1

K∑
k=1

pjk ·X∞(pjkλjk) (31)

such that

∀ j, k: λjk · pjk ≥ Ljk “capacity sharing” (32)

pjk ≥ 0 (33)

L · ~p ≤ ~µ “utilization” (34)

L · ~p = ~λ “full service.” (35)
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We divide the incoming tasks into J subgroups, each of which requires a skill set independent

of other subgroups. For emphasis, we may refer to one of these subgroups as a job class, task

type, contact type, or learning dimension. Then we will associate a separate learning curve for

every agent k, for every job type j. The nonlinear program (NLP) with linear constraints of Equa-

tions (31) through (35) finds the best routing proportion pjk of job type j to agent k. The objective

chosen in Equation (31) is the customer’s utility function; alternatively, the supervisor’s objective

of Equation (36) may be substituted here instead. These functions use Equation (4), so we will

be reasoning about asymptotic expertise levels; in this section we may shorten the expression for

asymptotic expertise from X∞ to just X .

max
pjk

Us =
J∑

j=1

K∑
k=1

X∞(pjkλjk) (36)

(such that...)

Three system constraints control the program’s flexibility in choosing pjk: the capacity sharing

constraint, from Section 4.2; a utilization constraint, holding work assignment for every agent k to

less than 100%, or
∑J

j=1 pjk · λj ≤ µk ; and a full service constraint, such that all arriving jobs

are assigned to some agent. Matrix L has K rows and J · K columns, vector ~p of pjk values has

J ∗K elements, vector ~L has K elements, vector ~µ has K elements, and vector ~λ has J elements.

We omit it here, but sometimes supervisors might prefer a fairness constraint be used as well, so

the mean utilization of all agents is the same.

Here we assume management considers both Uc and Us to have merit, and is interested in seeing

the trade-offs involved in choosing either objective. Most of the work then involves computing and

analyzing the customer’s utility. It is easy to compute the even routing solution for Us—just give

every agent an equal share of each task type! As we saw in Figure 4, however, Uc has multiple

optima, and any particular solution depends on the initial conditions we submit to the solver. Our

initial condition is a vector of even routing probabilities, with a slight random bias added in to

ensure that the solution for objective Us consists of extreme points.

Given the distribution of arrival traffic in Figure 7, the NLP solver’s routing assignments ~p

for objectives Uc and Us appear in Figure 8. This and subsequent experiments assume a 7-agent,

5-job class system. The system’s utilization is 40% in this case, and there is some flexibility to

choose routing assignments while meeting waiting time targets. Objective Uc’s arrangement takes

contact types not subject to forced sharing and develops specialists, and objective Us’s arrangement
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Figure 9: Left: Plot of the NLP output metric E[X] versus system utilization ρ, when the NLP objective is Uc (stars)
and Us (squares). Right: Plot of the NLP output metric S[X] versus system utilization ρ, when the NLP objective is
Uc (stars) and Us (squares). See Section 4.1 for details.

distributes jobs evenly. Note that if the service rates for all job types are the same, the assignment

by objective Us is equivalent to the longest queue first service discipline often used as the default

routing policy in contact centers.

It should be noted that the routing rule targets given by the vector of proportions ~p can be

implemented in many ways. For example, a strict schedule may be kept, and calls denied to

agents who are ahead of schedule, so they do not take customers who would otherwise maintain

the pre-planned level of their fellow agents’ expertise. Yet denying any calls (i.e., forcing longer

waits until the scheduled agents are available) would reduce the center’s service level. Another

implementation would be to set routing priorities based on ~p, but never deny routing a call to an

agent when higher priority agents are busy. Due to the stochastic nature of arrivals, the expertise

targets based on ~p would not be met precisely, but the impact on service levels would be minimized.

Due to space constraints our focus in this paper must remain the characterization of the NLP

solutions, but we recommend thoroughly simulating alternate implementation strategies for ~p in

practice to quantify these trade-offs.

Note that the customer’s utility Uc = E[X] and the supervisor’s utility Us = S[X] may be

objective functions to be optimized, or they may be performance metrics by which to judge the

effects of routing assignments. To avoid confusion, from now on we will use the terms Uc and Us

when describing objectives, and E[X] and S[X] when discussing metrics.

Figure 9, on the left, shows a plot of the output result from our NLP solver of the output metric

E[X]. Stars indicate the objective function was Uc; squares indicate the objective function was Us.

The top curves had a higher learning rate. See Table 2 for details of the parameters used. Starting
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at the left of the curve, utilization grows as the arrivals to the system increase, and expertise also

increases because there are more chances for agents to learn. However, midway the effect of the

sharing lower bound Ljk manifests itself as well, forcing agents to share work assignments, and

reducing opportunities for agents to gain specialized expertise. As the effect of Ljk grows for

increasing ρ, capacity issues force the system to adopt even routing; then E[X] drops and S[X]

rises. At the far right, the NLP solutions for objectives Uc and Us have become the same.

4.2 The Capacity-Constrained Task Sharing Lower Bound

As Figure 9 shows, a key constraint in this setting is the lower bound on the number of jobs of a

specific type that an agent must accept. If this lower bound is zero, we have the flexibility to assign

some or none of this task type to this agent; in particular, this is useful when we desire to optimize

the customer’s utility Uc. If it is nonzero, we must assign at least that portion of type j tasks to

the agent in order to meet the system’s service level targets. We denote this lower bound by Ljk.

Due to its impact on routing flexibility, we call this quantity the level of capacity-constrained task

sharing.

Given a number of different task types, individual agent assignments, and assumptions about

the service and arrival time distributions, it may be a complex process to determine this lower

bound precisely. A convenient means to make an estimate of Ljk for each job class j is as follows.

1. Design the system according to an M/M/C model, and set staffing levels to achieve the

desired service level targets. See Gans et al. (2003) for a detailed discussion. According to

their definitions, here we are dealing with systems in the quality regime.

2. Note that the probability that a customer waits for time tw, given that she waits at all, is

Pr{tw > t | tw > 0) = e−t(µC−λ).

3. Then the conditional expectation of this waiting time is

E[tw > t | tw > 0] = ETw(C, µ, λ) =

∫ ∞

t=0

τ · (µC − λ) · e−τ(µC−λ)dτ

= (µC − λ)−1

For more details, see Gross and Harris (1998).

4. For each task type j, assume we assign a group of agents Cj to be full-time specialists who

handle it, and these specialists have about the same utilization ρ as the rest of the agents.

Then Cj may be found from ρ = λj/(Cjµ).
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Type λj Cj λ− λj ETw(C − Cj , µ, λ− λj) ∆ETw > η ? Ljk

1 0.82 3.00 1.98 0.49 0.26 0.12
2 0.82 3.00 1.98 0.49 0.26 0.12
3 0.64 2.00 2.16 0.35 0.11 0
4 0.29 1.00 2.51 0.29 0.05 0
5 0.22 1.00 2.58 0.29 0.05 0

Table 1: A fast way to approximate what the sharing lower bound should be. This example uses the arrival pattern
over learning dimensions of Figure 7. Here

∑5
j=1 λj = 2.8, µ = 1, C = 7, ρ = 0.4, η = 0.15, and ETw(C, µ, λ) =

0.238.

5. If ETw(C − Cj, µ, λ − λj) − ETw(C, µ, λ) > η, for some cutoff η to be determined, then

a policy of extreme routing to achieve high levels of specialized expertise in task type j will

cause an unacceptable increase in waiting time.

6. For tasks that fail the test, set Ljk = λj/C, or in our notation for the number of agents K,

Ljk = λj/K.

The goal of this procedure is to impinge only a small amount (determined by η) on the routing

choices of the M/M/C system, in order to preserve its service-level performance. For tasks that

make up a large proportion of the system arrivals, this will not be possible, andLjk will be nonzero.

Table 1 shows an example of how to estimate Ljk. Again, this simple procedure is only a rough

approximation, and we expect more thorough methods of waiting time analysis, including discrete-

event simulation, to be used in applications.

By setting Ljk = λj/K, we exclude one possible path to better solutions—we could instead

assign the forced sharing to apply only to a subset of the agents, and try to find the optimal subset

for each sharing group. On the other hand, extending the bound to all agents through our assign-

ment Ljk = λj/K provides useful rostering flexibility for handling high-volume call types. In the

next sections’ results we retain our simple approach, and just note for future study the possibility

of more combinatorial optimization work. See Iravani et al. (2007) for interesting new research

along these lines.

4.3 Routing Rules Driven by the Distribution of Contact Types/Learning
Dimensions

Because nonzero Ljk values force the system to follow a more even routing rule for type j tasks,

its presence has an important implication for system-wide expertise optimization. If the system’s

traffic is defined by a small number of task types, each with a large enough arrival rate to force
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Figure 10: Left: Three hypothetical arrival patterns faced by a contact center. With respect to on-the-job learning,
each job class represents a unique learning dimension, for which expertise must be developed separately. The service
capacity-based limit a drives the lower bound of Section 4.3, and a combined with the arrival pattern determines the
firm’s flexibility in routing jobs to optimize agents’ expertise. Right: Empirical pattern of arrival rates for different job
classes for a financial services contact center.

a significant sharing lower bound, then there is no flexibility for specialization in routing assign-

ments; the system defaults to even routing and the supervisor’s utility Us.

Figure 10 illustrates this dynamic. The constant a defines how much management will tolerate

boosting specialized expertise and objective Uc at the cost of reducing service levels. The three

sets of axes show three hypothetical arrival patterns faced by a contact center. With respect to on-

the-job learning, each job class represents a unique learning dimension, for which expertise must

be developed separately. At the top left, arrival rates are small enough that job classes do not need

to be shared by all agents, permitting specialization, and allowing Uc to be optimized by extreme

routing. At bottom left, arrival rates for each class are large, such that all job classes must be shared

by all agents to meet waiting time goals. At right is an arrival pattern over learning dimensions seen

in empirical contact center data. Some tasks with high arrival rates require a level of participation

and proficiency by all agents; but others are small enough that service may be limited to selected

agents, boosting the customer’s utility Uc for those particular types.

Figure 11 summarizes our experiments related to the distribution of traffic over learning di-

mensions. The distributions at left appear with a dotted line to indicate the arrival rate λj above

which forced task sharing is invoked. At right, the gain in the metric E[X] of objective function

Uc over Us appears in the first column, and the average value of the sharing lower bound in the

second. Note these five cases of particular interest:

A. Here one learning dimension, λ1, generates much more traffic than the others. The sharing
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lower bound L1k is so large that the agents have little spare capacity to become a specialist in the

other tasks; all the other tasks must be shared as well. Given the precision limits of our NLP solver,

a large enough λ1 value he routing rule reverts to Us.

B. One task generates just enough traffic to make L1k nonzero. There is some forced sharing,

but also significant flexibility to specialize in tasks λ2 through λ5.

C. Two lower bounds L1k and L2k are imposed on the agents, reducing the flexibility of agent

k to specialize to µk−L1k−L2k. In general, as more learning dimensions cross the forced sharing

threshold, the NLP’s flexibility to choose routing proportions decreases.

D. All learning dimensions are below the forced sharing threshold. Ljk = 0 for all j; highly

specialized task assignments are possible, and Uc can be very high.

E. All learning dimensions are above the forced sharing threshold, and the routing rule reverts

to Us.

When cases B, C, or D hold, management has the ability to boost the customer’s utility if it

wishes to. On the other hand, were it known that the distribution is A or E, management has no

need to devise rosters of partial specialists to implement Uc—the firm will just end up adopting

even routing and the supervisor’s utility.

4.4 Routing Rules Driven by the Ratio of Learning to Forgetting Rates

From Equation (4), parameter α represents the learning rate and β the forgetting rate. Figure 12

demonstrates how the two expertise objectives change as the ratio α/β increases from 1 to 200.

The test parameters were the same as those of Figure 9, with ρ = 0.4. At higher values of this ratio,

learning is so fast that agents become experts from handling even a small amount of traffic, and so

all agents may serve all contact types. Over most of this range, for this example extending from

about 10 to over 100, the difference between the objectives on metric S[X]/K is much greater

than the difference on metric E[X], making a policy of specialization less attractive.

When the ratio is less than about 10, and the impact of forgetting is high, ongoing maintenance

of expertise levels through specialization and objective Uc is more attractive. With respect to on-

the-job learning in call centers, these results suggest that specialization and extreme routing rules

are most valuable when the forgetting rate is significant.
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Figure 11: Left column: five traffic distributions, with the cutoff value for triggering task sharing shown as a dotted
horizontal line. Right column: two quantities affected by the distribution. “E[X] gain” is the expected value metric
under objective Uc divided by its value under objective Us, showing how much better a policy of specialization may
do compared to a policy of even routing. “Forced sharing” is the average sharing lower bound per agent over all job
types, indicating the proportion of an agent’s service rate that must be dedicated to shared tasks. For distributions A
through D the system utilization was 40%, and for E it was 60%. Note that the higher the sharing becomes, the lower
the gain is reduced.

5. Conclusions, and Recommendations for Future Work

In this paper, we develop a method to quantify how task routing rules influence the long-run exper-

tise of agents in a call center through on-the-job learning effects. We then prove how to obtain the

optimal solutions for two conflicting objectives: the expected value of expertise seen by customers,

or the customer’s objective; and the sum of all the expertise within the firm, or the supervisor’s

objective. A policy whereby agents specialize in as few tasks as possible optimizes the expected

value, while a policy of all agents handling all call types optimizes the sum.

Applying these insights, we describe a nonlinear programming solver to create routing rules

of customer types to agents. This solver finds an optimal rule set that maximizes the distribution

of expertise among agents within boundaries set by waiting time constraints, because call center

management will only consider agent expertise targets to be useful if they do not significantly

lengthen customer wait times. The most important means of communicating this capacity issue to

the solver is through the forced task sharing lower bound. We see that a key driver of this lower
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Figure 12: Left: Plot of the NLP output metric E[X] versus the ratio of learning to forgetting rates α/β, when the
NLP objective is Uc (stars) and Us (squares). Right: Plot of the NLP output metric S[X]/K versus α/β, when the
NLP objective is Uc (stars) and Us (squares). When learning is very fast compared to forgetting, both even routing and
extreme routing result in about the same level of expertise.

bound is the distribution of traffic over the learning dimensions defined by the various task types,

and we specify what mix of specialized and balanced routing rules is possible given a particular

shape for this distribution.

Our major finding is the following: because the customer’s utility for expertise is optimized

by task specialization, any improvement in the customer’s utility works against the waiting time

reduction made possible by server pooling. Nevertheless, given the right traffic distribution, it is

possible to introduce some specialization within capacity constraints to boost the customer’s utility

along selected learning dimensions.

These results suggest a number of useful areas for future work. First, the forced sharing lower

bound may be made more precise, which will improve the quality of the solver’s routing assign-

ments. Second, a mixed objective function that rewards the expected value of expertise but pe-

nalizes the variance in expertise levels seen by customers may be able to create useful blends of

balanced and specialized routing. Similarly, a minimax objective may be able to maximize the

lowest asymptotic value of expertise that a customer would see. Third, there are many ways to im-

plement the solver’s assignments, causing more or less impact on customer waiting times. These

should be explored using analytical methods and simulation, and the results used to improve the

sharing lower bound.

Finally, our discussion of the effect of agent and task turnover is limited here because we only

consider asymptotic expertise levels. Sometimes skilled agents quit, and inexperienced agents

must take over their work. Such transient cases complicate our performance analysis of balanced
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Default Parameters Used
# Contact # Agents Learning Forgetting Sharing System Service Rate
Types, J K Rate α Rate β Parameter η Utilization ρ Per Agent
5 7 3.5e-3 5e-4 0.15 0.4 1 (arbitrary

time units)
Constraint Objective Output Vector Maximum Solver Solver Type
Tolerance Fun. Tolerance ~p Tolerance Iterations
1e-8 1e-8 1e-8 1000 Sequential Quadratic Program

with Line Search
Figure 10: Study of E[X] and S[X] Versus Utilization ρ
Utilization Values α, top α, bottom Other Parameters
0.16, 0.22, 0.28, 0.34, 0.4, 0.46, 0.52, 0.58 6e-3 3.5e-3 Default
Figure 12: Study of Arrival Distributions
Arrival Rate Distribution Other Parameters
1.74, 0.43, 0.28, 0.21, 0.14 Default
1.09, 0.84, 0.39, 0.29, 0.19 Default
0.82, 0.82, 0.64, 0.29, 0.22 Default
0.56, 0.56, 0.56, 0.56, 0.56 Default
0.84, 0.84, 0.84, 0.84, 0.84 Default
Figure 13: Study of E[X] and S[X] Versus Utilization ρ
Forgetting Values α Other Parameters
1e-5 * (400, 200, 100, 50, 20, 10, 5, 2.5) 4e-3 Default

Table 2: Summary of parameters used in experiments.

versus extreme routing rules. One straightforward extension would be to create a discrete Markov

chain using sampled versions of our learning-forgetting experience curves, together with states

for task and agent quitting. Then appropriate penalties or rewards may be assigned to the states.

Multiplying the stationary distribution and the reward vector would provide a measure of turnover’s

impact.

All too often on-the-job learning is considered to be an exogenous parameter by designers of

call center operations. We hope to contribute towards a better understanding of this phenomenon,

so that call center operators may include it in their planning process and use it as a means of

competitive advantage in the markets they serve.

6. Appendix

6.1 Appendix: The Concave Property of Asymptotic Expertise

Under the range of parameters that are of interest in studying on-the-job productivity changes, the

expertise function of Equation (4) is a concave function in p, as Figure 2 suggests. This concave

property is a way of capturing the well-documented observation that real learning curves exhibit
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diminishing returns with increased production. For example, empirical results have been fit to

functions that show equal increments of improvement for every doubling of a worker’s cumulative

production. The arguments below discuss the conditions under the asymptotic expertise model of

Section 2.1 is concave.

To simplify notation, let θ(p) = eβ·((p·λ)−1−(µ)−1)+ . Then the expertise function and its deriva-

tives with respect to p are given by:

X(p) =
α

θ(p) + α− 1
(37)

X ′(p) =
αβθ

(θ(p) + α− 1)2 p2λ
(38)

X ′′(p) =
αβθ(p)[−βθ(p) + 2pλθ(p) + 2pλα− 2pλ + αβ − β]

(θ(p) + α− 1)3 p4 λ2
(39)

Applying the condition X ′′(p) ≤ 0 allows us to identify the range of parameters needed for

X(p) to be concave, resulting in the following relationship between learning parameter α, forget-

ting parameter β, job routing assignment (pλ)−1, and service rate µ.

α ≥ 1− θ(p) (2pλ− β)

(2pλ + β)
(40)

Let β = K · p · λ; then (40) becomes

α ≥ 1− eK(1−(pλ/µ)) ·
[
(2−K)

(2 + K)

]
. (41)

For modeling learning-based performance in environments such as call centers, we would like

the asymptotic value of expertise to be achieved after cumulative production Nc has reached tens,

hundreds, or thousands of jobs. Nc is inversely proportional to α, so α will typically range between

ahi = 0.05 and alow = 1e− 4.

With this in mind, Inequality (41) defines a range of α values for which the asymptotic expertise

function is concave. For alow ≤ α ≤ ahi, we have K < 2, and β < 2pλ. We take a single agent’s

utilization to be 100% or less, so (pλ/µ) ≤ 1. Under these conditions, Inequality (41) always

holds, and thus expertise is concave, for α ≥ β. In fact, at lower utilization rates β can grow much

larger than α and still preserve concavity; but unless otherwise indicated, we will only consider

examples of asymptotic expertise where the learning rate α is equal to or greater than the forgetting

rate β.
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Figure 13: Left: regions of integration for the integral of W = |X − Y |. Right: behavior of the forgetting function
of Equation (45).

6.2 Appendix: Expertise Based on Idle Times

In some cases we would like to base the amount of forgetting on the length of idle time τI , rather

than the interarrival time τa, so expertise is not lost during the service time. To do this, we can

adapt a well-known distribution for the difference between two exponential random variables (this

assumes arrivals and service are Markovian). First, consider X ∼ ν1e
−ν1x, Y ∼ ν2e

−ν2y, and

W = |X − Y |. Then we can find the density function of W with the help of Figure 13 (left), as

follows.

FW (w) = P{|X − Y | ≤ w}

= P{X − w ≤ Y ≤ X + w}

=

∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y)dxdy

=

∫ ∞

0

[∫ x+w

x

ν1e
−ν1xν2e

−ν2ydx

]
dy +

∫ ∞

0

[∫ y+w

y

ν1e
−ν1xν2e

−ν2ydx

]
dy

=
ν1

ν1 + ν2

(1− e−ν1w) +
ν2

ν1 + ν2

(1− e−ν2w) (42)

Taking the derivative of Equation 42 gives the distribution of W :

fW (w) =
ν1

ν1 + ν2

ν2e
−ν2w +

ν2

ν1 + ν2

ν1e
−ν1w (43)

Recall that the idle time is given by τI = ( 1
pλ
− 1

µ
)+, where pλ is the mean interarrival time and 1/µ

is the mean service time. We expect that most of the random arrival intervals will be greater than

most of the random service times; the superscript “+” indicates that τI is never negative—but it

may occasionally be zero when a service encounter lasts so long that another customer ready to be
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seen by this agent. We can adapt Equation 43 to describe this by altering it to be a mixed random

variable, with a discrete probability mass at the event τI = 0. Then we can determine the expected

value for our negative exponential forgetting function, E[e−βτI ].

fτI
(τI) =

ν2

ν1 + ν2

ν1e
−ν1τI +

ν1

ν1 + ν2

E[e−βτI ] =

∫ ∞

0

e−βτIfτI
(τI)dτI

= e−β·0 ν1

ν1 + ν2

+

∫ ∞

0

e−βτI
ν2

ν1 + ν2

ν1e
−ν1τIdτI

E[e−βτI ] =
ν1

ν1 + ν2

(
1 +

ν2

ν1 + β

)
(44)

Now let ν1 = pλ, and ν2 = µ in Equation (44), so we can represent the expected impact of

forgetting on the agent’s expertise level as:

E[e−βτI ] =
pλ

pλ + µ

(
1 +

µ

pλ + β

)
(45)

Figure 13 (right) shows the behavior of Equation 45.

Consider θ = E[e−βτI ], as given by Equation 45. Then the asymptotic value of expertise

becomes:

θ =
pλ

pλ + µ

(
1 +

µ

pλ + β

)
θ−1 =

(pλ + µ)(pλ + β)

pλ(pλ + β + µ)

X∞ =
α

θ−1 + α− 1

=
α

(pλ+µ)(pλ+β)
pλ(pλ+β+µ)

+ α− 1
.

X∞(p) =
α(p2λ2 + βpλ + µpλ)

α(p2λ2 + βpλ + µpλ) + βµ
. (46)

This result is more complex than Equation (13) due to the introduction of the service rate µ.

Now forgetting occurs only when the agent is idle. Note that the impact of forgetting grows as the

product βµ gets larger—when the service rate µ is high, the agent is idle for longer periods of time.
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