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Abstract

Background: We focus on microarray data where experiments monitor gene expression in
different tissues and where each experiment is equipped with an additional response variable
such as a cancer type. Although the number of measured genes is in the thousands, it is assumed
that only a few marker components of gene subsets determine the type of a tissue. Here we
present a new method for finding such groups of genes by directly incorporating the response
variables into the grouping process, yielding a supervised clustering algorithm for genes. 

Results: An empirical study on eight publicly available microarray datasets shows that our
algorithm identifies gene clusters with excellent predictive potential, often superior to
classification with state-of-the-art methods based on single genes. Permutation tests and
bootstrapping provide evidence that the output is reasonably stable and more than a noise
artifact. 

Conclusions: In contrast to other methods such as hierarchical clustering, our algorithm
identifies several gene clusters whose expression levels clearly distinguish the different tissue
types. The identification of such gene clusters is potentially useful for medical diagnostics and may
at the same time reveal insights into functional genomics. 
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Background
Microarray technology allows the measurement of expres-

sion levels of thousands of genes simultaneously and is

expected to contribute significantly to advances in funda-

mental questions of biology and medicine. We focus on the

case where the experiments monitor the gene expression of

different tissue samples, and where each experiment is

equipped with an additional categorical outcome variable,

describing, for example, a cancer type. An important

problem in this setting is to study the relation between gene

expression and tissue type. While microarrays monitor thou-

sands of genes, it is assumed that only a few underlying

marker components of gene subsets account for nearly all of

the outcome variation - that is, determine the type of a

tissue. The identification of these functional groups is crucial

for tissue classification in medical diagnostics, as well as for

understanding how the genome as a whole works. 

As a first approach, unsupervised clustering techniques

have been widely applied to find groups of co-regulated

genes on microarray data. Hierarchical clustering [1,2]

identifies sets of correlated genes with similar behavior

across the experiments, but yields thousands of clusters in a

tree-like structure. This makes the identification of func-

tional groups very difficult. In contrast, self-organizing-

maps [3] require a prespecified number and an initial

spatial structure of clusters, but this may be hard to come

up with in real problems. These drawbacks were improved
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by a novel graph theoretical clustering algorithm [4], but as

with all other unsupervised techniques, it usually fails to

reveal functional groups of genes that are of special interest

in tissue classification. This is because genes are clustered

by similarity only, without using any information about the

experiment’s response variables. 

We focus here on supervised clustering, defined as grouping

of variables (genes), controlled by information about the Y

variables, that is, the tumor types of the tissues. Previous

work in this field encompasses tree harvesting [5], a two-

step method which consists first of generating numerous

candidate groups by unsupervised hierarchical clustering.

Then, the average expression profile of each cluster is con-

sidered as a potential input variable for a response model

and the few gene groups that contain the most useful infor-

mation for tissue discrimination are identified. Only this

second step makes the clustering supervised, as the selection

process relies on external information about the tissue types.

An interesting supervised clustering approach that directly

incorporates the response variables Y in the grouping

process is the partial least squares (PLS) procedure [6,7], a

tool often applied in the chemometrics literature, which in a

supervised manner constructs weighted linear combinations

of genes that have maximal covariance with the outcome.

PLS has the drawback that the fitted components involve all

(usually thousands of) genes, which makes them very diffi-

cult to interpret. 

Here we present a promising new method for searching func-

tional groups, each made up of only a few genes whose con-

sensus expression profiles provide useful information for

tissue discrimination. Like PLS, it is a one-step approach that

directly incorporates the response variables Y into the group-

ing process, and is thus an algorithm for supervised cluster-

ing of genes. Because of the combinatorial complexity when

clustering thousands of genes, we rely on a greedy strategy. It

optimizes an empirical objective function that quickly and

efficiently measures the cluster’s ability for phenotype dis-

crimination. Inspired by [8], we choose Wilcoxon’s test statis-

tic for two unpaired samples [9], refined by a novel second

criterion, the margin function. Our supervised algorithm can

be started with or without initial groups of genes, and then

clusters genes in a stepwise forward and backward search, as

long as their differential expression in terms of our objective

function can be improved. This yields clusters typically made

up of three to nine genes, whose coherent average expression

levels allow perfect discrimination of tissue types. In an

empirical study, the clusters show excellent out-of-sample

predictive potential, and permutation and randomization

techniques show that they are reasonably stable and clearly

more than just a noise artifact. The output of our algorithm is

thus potentially beneficial for cancer-type diagnosis. At the

same time it is very accessible for interpretation, as the

output consists of a very limited number of clusters, each

summarizing the information about a few genes. Thus, it may

also reveal insights into biological processes and give hints on

explaining how the genome works. 

We first describe our new algorithm for supervised cluster-

ing of gene-expression data and then apply the procedure to

eight publicly available microarray datasets and test the

results for their predictive potential, stability and relevance.

Results and discussion
Algorithm for supervised clustering of genes
This section presents an algorithm for supervised learning of

similarities and interactions among predictor variables for

classification in very high dimensional spaces, and hence is

predestinated for searching functional groups of genes on

microarray expression data. 

The partitioning problem
Our basic stochastic model for microarray data equipped

with categorical response is given by a random pair 

(X, Y) with values R
p

x Y

where X � Rp
denotes a log-transformed gene-expression

profile of a tissue sample, standardized to mean zero and

unit variance. Y is the associated response variable, taking

numeric values in Y = {0,1, …, K - 1}. A usual interpretation

is that Y codes for one of K cancer types. For simplicity, and

a concise description of the algorithm, we first assume that

K = 2, so that the response is binary. A generalization of the

setting for multicategorical response (K > 2) is given below.

To account for the fact that not all p genes on the chip, but

rather a few functional gene subsets, determine nearly all of

the outcome variation and thus the type of a tissue, we

model the conditional probability as 

P[Y = 1�X] = f(XC1
, XC2

,…, XCq
), (1)

where f (·) is a nonlinear function mapping from Rq to [0,1],

{C1,…,Cq} with q << p are functional groups or clusters of

genes which form a disjoint and usually incomplete partition

of the index set: {�i=1
q

Ci} � {1,…, p} and Ci � Cj = �, i � j.

Finally, XCi
� R denotes a ‘representative’ expression value

of gene cluster Ci. There are many possibilities to determine

such group values XCi
, but as we would like to shape clusters

that contain similar genes, a simple linear combination is an

accurate choice (see [5,10]): 

XCi
=   1——
�Ci� �

g�Ci

�gXg with �g� {-1,1}. (2)

Because of the use of log-transformed, mean-centered and

standardized expression data, we, as a novel extension, allow

the contribution of a particular gene g to the group value XCi

also to be given by its ‘sign-flipped’ expression value -Xg.
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This means that we treat under- and overexpression sym-

metrically, and it prevents the differential expression of

genes with different polarity (that is, one with low expres-

sion for class 0 and the other with low expression for class 1)

from canceling out when they are averaged. But even by

using such simple cluster expression values as in Equation 2,

finding a partition of the index set {1,…, p} into subsets or

clusters {C1,…, Cq} that virtually determine the probability

structure is still highly non-trivial and the design of a proce-

dure that reveals the exact partition according to Equation 1

is too ambitious. Thus, we have developed a computationally

intensive procedure that approximately solves Equation 1

and empirically yields good results.

Clustering with scores and margins 
A practical heuristic for gene clustering is the cluster affinity

search technique (CAST) [4]. Our approach is algorithmi-

cally similar and also relies on growing the cluster incremen-

tally by adding one gene after the other. Subsequent cleaning

steps help us to remove spurious genes that were incorrectly

added to the cluster at earlier stages. As in CAST, we repeat

growth and removal until the cluster stabilizes, and then

start a new cluster. The main, and very important, difference

is that we do not augment (or shorten) the cluster by the

gene that suits best (or least) into the current cluster in

terms of an unsupervised similarity measure, but base our

strategy for supervised clustering of genes on adding (or

removing) the gene that improves the differential expression

of the current cluster most, according to an empirical objec-

tive function for the representative group values from Equa-

tion 2. To be more explicit, we assume now that we are given

n independent and identically distributed realizations

(x1, y1),…, (xn, yn), with xj �Rp
and yj � {0,1}, (3)

of the random vector (X, Y), whose expression profiles xj are

centered to mean zero and scaled to unit variance. The

objective function needs to be a quantitative and efficiently

computable measure of a cluster’s ability to discriminate the

tissues. As we aim for subsets of genes with accurate separa-

tion in binary problems, we rely on Wilcoxon’s test statistic

for two unpaired samples [9], which has been also applied as

a nonparametric rank-based score function for genes in [8].

The score of a single gene i is computed from its n-dimen-

sional vector of observed values �i = (xi1,…,xin),

Score (�i) = s(�i) = �
j��0

�
l��1  

1 �xij � xil�
, (4)

where xij is the expression value of gene i for tissue j and Nk

represents the set of the nk tissues � {1,…,n} being of type k �

{0,1}. The score uses information about the type of the tissues

and is thus a criterion for supervised clustering. It can be

interpreted as counting, for each experiment having response

value 0, the number of tissues from class 1 that have smaller

expression values, and summing up these quantities.

Computing the score for a gene cluster Ci goes likewise via its

observed representative values �Ci
= (xCi,1,…, xCi

,n). Viewing

the score as Wilcoxon’s test statistic, it allows the ordering of

genes and clusters according to their potential significance

for tissue discrimination. If the expression values of a partic-

ular gene or cluster yield exact separation of the classes, the

expression values for all tissue samples having response 0

are uniformly lower than the ones belonging to class 1 or vice

versa. In the former case, the score function returns its

minimal value smin = 0, in the latter case the maximum score

smax = n0 n1 is assigned.

We rely on the use of log-transformed, mean-centered and

standardized gene-expression data and thus need to prevent

the averaging of two discriminatory genes with different

polarity (that is, one with low expression for class 0 and the

other with low expression for class 1) canceling out the dif-

ferential expression of their mean. Therefore, we aim for low

expression values pointing to class 0 for all genes, which is

achieved by using the sign-flipped expression �i
~

for all genes

i � {1,…, p},

(xi1,…, xin), if s(�i) � smax /2,
�i
~

= �i�i = �(-xi1,…, -xin), if s(�i) � smax /2.
(5)

The sign-flip is equivalent to setting �g = -1 in Equation 2 for

all genes that tend to have lower expression values for the

tissues of type 1 than for tissues of type 0. After the sign-flip,

the scores of all individual genes i in the expression matrix

are equal to 

s(�i
~

) = min(s(�i), smax - (s(�i)),

and as all genes now have the same polarity, we can safely

average them to compute group expression values. It is

important to notice that the biological interpretation is not

impeded by the sign-flips. Nevertheless, for interpretative

purposes, the information about them should be recorded.

During the clustering process, we typically come across dif-

ferent gene or cluster expression vectors that have equal

score (often zero) and hence the same quality according to

our objective function. This is due to the discrete range of

the score function. To achieve uniqueness in the decisions in

which gene or cluster is optimal, we need a refinement of our

objective function. We thus introduce the margin function, a

continuous and real-valued measure for the strength of

tissue discrimination of a sign-flipped gene-expression

vector �i
~

, where low expression values point towards the

tissues of class 0, 

Margin (�i) = m (�i) = min
l�N1

(xil) - max
j�N0

(xij), (6)

where N0, N1 and xij are as in Equation 4. The margin func-

tion is positive if, and only if, the score is zero and �i
~

then



perfectly separates the tissues; otherwise it is negative. It mea-

sures the size of the gap between the lowest expression value

from tissues with response 1, and the highest gene expression

corresponding to class 0. The larger this gap, and hence the

value of the margin function, the easier and clearer the dis-

crimination of the two classes. The computation of the margin

is again likewise for clusters via �Ci
. Whenever various gene or

cluster expression profiles have equal scores, their quality is

judged by the margin function. Our objective function thus

has two components. The score function is regarded as highest

priority, whereas the margin function serves as the next

highest priority criterion to achieve uniqueness.

The algorithm 
Our clustering algorithm is detailed below.

1. Start with the entire p x n expression matrix X. Its rows

are genes, and its columns are observations of two differ-

ent tissue types, having zero mean and unit variance. 

2. Determine the score of every gene i, that is, every

n-dimensional row of observed expression values �i =

(xi1,…, xin) in X as in Equation 4. Flip the sign of each

gene expression vector �i that has score s(�i) > smax/2 by

multiplying it with (-1), 

�i, if s(�i) � smax /2,
�i
~

= �i�i = �-�i, if s(�i) � smax /2.

This operation changes the score to s(�i
~

) = min(s(�i), smax

- s(�i)). 

3. Composition of the starting values 

(a) If no initial cluster C is given, identify the gene i* having

the lowest score s(�i
~

). If more than one is found, the gene

i* with the largest margin m(�i
~

) as in Equation 6 is

chosen. Set the initial cluster mean �C equal to the

expression vector (�i
~

*) of the chosen gene. 

(b) If an initial cluster C is given, average the expression of

the genes therein, 

�C =   1——
�C� �

g�C

�g
~ 

=    1——
�C� �

g�C

�g · (xg1,…, xgn)

4. Forward search 

Average the current cluster expression profile �C with

each individual gene i, 

�C+i =    1———
�C�+1 ��i

~
+ �

g�C

�g
~� ,   i = 1,…, p.

Identify the winning gene i* as arg mini s(�C+i); that is,

the gene that leads to the lowest score. If not unique,

identify the winning gene i* as the one that optimizes

score and margin; that is, i* = arg mini s(�C+ i) as well as

i* = arg maxi m(�C+i).

5. Repeat step 4 until the identified gene i* is no longer

accepted to enter the cluster. This is said to happen if the

score of the updated cluster expression vector �C+i*

worsens, that is, s(�C+i*) > s(�C), or if the score remains

unchanged and the margin deteriorates, that is, s(�C+i*) =

s(�C) as well as m(�C+i*) < m(�C). 

6. Backward search 

Exclude each gene i of the current cluster C separately, and

average the expression vectors of the remaining genes, 

�C-i =    1———
�C�-1 � �

g�C\{i}

�g
~� ,   i � C.

Compute score and margin of each �C - i. Identify (as in

step 4) that gene i* whose exclusion optimizes the score,

or if not unique, optimizes score and margin. 

7. Repeat step 6 until the exclusion of the identified gene i*

is (according to the formulation in step 5) no longer

accepted. 

8. Repeat steps 4-7 until the cluster converges and the

objective function is optimal. 

9. If more than one cluster C is desired, discard the genes in

the former clusters from X and restart the algorithm at

step 3 with the reduced, sign-flipped expression matrix. 

The algorithm begins with the sign-flip operation described

in Equation 5 to bring all genes to the same polarity. The

clustering process can be started with or without initial gene

clusters. If none are given, we start the procedure with the

single gene that optimizes the objective function. Otherwise,

the representative value of the starting cluster is determined.

We then proceed by constructing the cluster incrementally.

By searching among all genes, we merge and average the

current cluster with one single gene, such that the aug-

mented cluster optimizes our objective function, that is, has

the lowest score or (in case of ‘ties’) the largest margin. The

merging process is repeated until the objective function can

no longer be improved. To remove spurious elements out of

the current cluster, we then continue with a backward

pruning stage, where genes are excluded step by step so that

the objective function is optimized by every single removal.

This cleaning stage aims to root out genes that were wrongly

added to the cluster before. Accordingly, the forward and

backward stages are repeated until the cluster converges,

that is, when no further improvement of the objective func-

tion by adding or removing single genes is possible. 

If one wishes to have more than q = 1 cluster for a binary

class distinction, the genes forming the first cluster are dis-

carded from the expression matrix, and the clustering

process is restarted, again with or without an initial cluster.

The algorithm’s computations are feasible for dimensions p

4 Genome Biology Vol 3 No 12 Dettling and Bühlmann



and sample sizes n which are clearly beyond today’s common

orders and hence also applicable for microarray experiments

in the future. The computing time for searching q = 5 clus-

ters in the binary leukemia dataset with n = 72 observations

and p = 3,571 genes on a Linux PC with an Intel Pentium IV

1.6 GHz processor is about 5 seconds only. Software for the

supervised clustering algorithm is available free as an

R-Package at [11].

In summary, our cluster algorithm is a combination of vari-

able (gene) selection for cluster membership and formation

of a new predictor by possible sign-flipping and averaging

the gene expressions within a cluster as in Equation 2. The

cluster membership is determined with a forward and back-

ward searching technique that optimizes the predictive score

and margin criteria in Equations 4 and 6, which both involve

the supervised response variables from the data. 

Generalization for multiclass problems 
Here we explain the extension of the supervised clustering

algorithm to multicategory (K > 2) problems, where the

response comprises more than two tissue types. We recom-

mend comparing each response class separately against all

other classes. This one-against-all approach for reduction to

K binary problems is very popular in the machine-learning

community, as many algorithms are solely designed for

binary response. It works by defining 

1,   if Y = k,
Y (k) = �0, else

and running K times the supervised clustering algorithm on

(x1,y1
(k)),…, (xn, yn

(k)) as explained above. The interpretation is

that we, as in Equation 1, model the conditional probability

for discrimination of the kth class versus all the other

response categories as depending on a few gene subsets only,

P �Y (k) = 1|X � = f �XC1
k, XC2

k,…, XCq
k� for k = 0,…, K - 1,

where fk(·) are nonlinear functions mapping from R
q

to

[0,1]. Ck
1,…, Ck

q are the q << p functional groups of genes and

XC1
k,…, XCq

k are their representative group values, defined as

in Equation 2. When the supervised clustering algorithm is

applied to each of the K binary class distinctions, this results

in totally K · q clusters, which can then be used to model the

conditional probability for the K-class response,

P �Y = k|X � = f �XC1
0,…, XCq

0,…, XC1
K-1,…, XCq

K-1�

It is important to notice that instead of considering each class

against all the other classes, many more ways to reduce a multi-

class problem to multiple binary problems exist (see [12,13] for

a thorough discussion). We assume that problem-dependent

solutions that utilize deeper knowledge about the biological

relation between the tissue types could be even more accurate

for reducing multicategory problems to binary problems. 

Numerical results 
Data 
Leukemia dataset. This dataset contains gene expression

levels of n = 72 patients either suffering from acute lym-

phoblastic leukemia (ALL, 47 cases) or acute myeloid

leukemia (AML, 25 cases) and was obtained from Affymetrix

oligonucleotide microarrays. For more information see [14];

the data are available at [15]. Following exactly the protocol

in [16], we preprocess the data by thresholding, filtering, a

logarithmic transformation, and standardization, so that they

finally comprise the expression values of p = 3,571 genes.

Breast cancer dataset. This dataset, described in [17],

monitors p = 7,129 genes in 49 breast tumor samples. The

data were obtained by applying the Affymetrix technology

and are available at [18]. We thresholded the raw data with a

floor of 100 and a ceiling of 16,000 before applying a base 10

logarithmic transformation. Finally, each experiment was

standardized to zero mean and unit variance. The response

variable describes the status of the estrogen receptor (ER).

According to [17], two samples failed to hybridize correctly

and were excluded from their analysis. In five cases, two dif-

ferent clinical tests for determination of the ER status

yielded conflicting results. These five plus another four ran-

domly chosen samples were also separated from the rest of

the data, so that a dataset of n = 38 samples remained, of

which 18 were ER-positive and 20 ER-negative.

Colon cancer dataset. In this dataset, expression levels of

40 tumor and 22 normal colon tissues for 6,500 human

genes are measured using the Affymetrix technology. A

selection of 2,000 genes with highest minimal intensity

across the samples has been made in [19]. The data are avail-

able at [20]. As for all other datasets, we process these data

further by carrying out a base 10 logarithmic transformation

and standardizing each tissue sample to zero mean and unit

variance across the genes.

Prostate cancer dataset. The raw data are available at

[15] and comprise the expression of 52 prostate tumors and

50 non-tumor prostate samples, obtained using the

Affymetrix technology. We use normalized and thresholded

data as described in [21]. We also excluded genes whose

expression varied less than fivefold relatively, or less than

500 units absolutely, between the samples, leaving us with

the expression of p = 6,033 genes. Finally, we applied a base

10 logarithmic transformation and standardized each experi-

ment to zero mean and unit variance across the genes.

SRBCT dataset. This was described in [22] and contains

gene-expression profiles for classifying small round blue-cell

tumors of childhood (SRBCT) into four classes (neuroblas-

toma, rhabdomyosarcoma, non-Hodgkin lymphoma, Ewing

family of tumors) and was obtained from cDNA microarrays.

A training set comprising 63 SRBCT tissues, as well as a test

set consisting of 20 SRBCT and 5 non-SRBCT samples are

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

http://genomebiology.com/2002/3/12/research/0069.5



available at [23]. Each tissue sample is associated with a

thoroughly preprocessed expression profile of p = 2,308

genes, already standardized to zero mean and unit variance

across genes.

Lymphoma dataset. This dataset is available at [24] and

contains gene-expression levels of the K = 3 most prevalent

adult lymphoid malignancies: 42 samples of diffuse large B-

cell lymphoma (DLBCL, class 0), 9 observations of follicular

lymphoma (FL, class 1), and 11 cases of chronic lymphocytic

leukemia (CLL, class 2). The total sample size is n = 62, and

the expression of p = 4,026 well-measured genes, preferen-

tially expressed in lymphoid cells or with known immuno-

logical or oncological importance is documented. More

information on these data can be found in [25]. We imputed

missing values and standardized the data as described

in [16].

Brain tumor dataset. This dataset, presented in [26], con-

tains n = 42 microarray gene expression profiles from K = 5

different tumors of the central nervous system, that is, 10

medulloblastomas, 10 malignant gliomas, 10 atypical tera-

toid/rhabdoid tumors (AT/RTs), 8 primitive neuro-ectoder-

mal tumors (PNETs) and 4 human cerebella. The raw data

were originated using the Affymetrix technology and are pub-

licly available at [15]. For data preprocessing, we followed the

protocol in the supplementary information to [26]. After

thresholding, filtering, a logarithmic transformation and

standardization of each experiment to zero mean and unit

variance, a dataset comprising p = 5,597 genes remained.

National Cancer Institute (NCI) dataset. This com-

prises gene-expression levels of p = 5,244 genes for n = 61

human tumor cell lines which can be divided in K = 8 classes:

seven breast, five CNS, seven colon, six leukemia, eight

melanoma, nine non-small-cell lung carcinoma, six ovarian

and nine renal tumors. A more detailed description of the

data can be found at [27] and in [28]. We work with pre-

processed data as in [16].

Results from the supervised clustering algorithm
In this section we briefly describe the results obtained by

applying the supervised clustering algorithm to the above

datasets. Generally, the output of the clustering procedure is

very promising. In all eight datasets we analyzed, comprising

a total of 24 binary class distinctions, the average cluster

expression xC always perfectly discriminates the two

response classes (in multiclass problems, this is one class

against the rest). Hence, the scores of all clusters are equal to

zero. Moreover, the clusters have strongly positive margins,

indicating that the different tissue types are clearly sepa-

rated. As an example, Figure 1 shows impressively how well

the average cluster expression vectors xC1
1 and xC1

2 discrimi-

nate between the three response classes of the lymphoma

dataset. It is intuitively clear from Figure 1 that our cluster

expression vectors xC are very suitable as predictor variables

for the tissue types and they indeed allow for error-free clas-

sification on the training data and also yield good results on

independent test datasets.

Permutation test
This section is concerned with assessing relevance and

addresses the question of whether or not the promising

output of the clustering procedure is a noise artifact. For this

purpose, we explore quality measures of clusters generated

from random-noise gene-expression data and compare them

to the results obtained with the original data. As the distrib-

utions of the score function s(·) and the margin function m(·)

on noise are not known, we rely on simulations. Let (y1,…,

yn) be the original set of responses. Then,

(y1*
(l),…, yn*

(l))

is a ‘shuffled’ set of responses, constructed from the original

response set by a random permutation for each l = 1,…, L.

We then allocate an element of the permuted response to

each of the (fixed) gene-expression profiles xi, giving us

independent and identically distributed pairs

(x1, y1*
(l )) , (x2, y2*

(l )),…, (xn, yn*
(l ))  for each l =1,…, L

as in Equation 3. The supervised clustering procedure is

then applied L = 1,000 times on such data with randomly

permuted responses. For every permuted set of responses, a
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Figure 1
Lymphoma data. Average cluster expression xC

1
1 shaped for the separation

of response class 1 (FL), versus response classes 0 and 2 (DLBCL and
CLL) on the x-axis, and xC

1
2 formed for discrimination of class 2 versus

classes 0 and 1 on the y-axis.
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single cluster (q = 1) was formed on the entire dataset and

both its final score s*(l) and margin m*(l) were recorded

(Tables 1,2). 

We explored the empirical distribution of the scores and

margins from permuted data to judge whether the clusters

found on the original datasets are of better quality than we

would expect by chance. The results given in Figure 2 and in

Tables 1 and 2 for a representative selection of data (see the

legend to Table 1 for details of data selection) are very satis-

factory. As outlined above, the scores s(0) on the original

datasets altogether are equal to zero, with clearly positive

margins m(0). The parameters on the randomly permuted

data are worse: the final score s*(l) reached the minimal

value of zero in 11% to 98% of the shuffling trials in different

datasets (for example, 41% in Figure 2). These frequencies

represent a non-significant result in our permutation test for

the score function. However, this is not very troubling, as the

final margins m*(l) for the permuted data were at best

slightly positive, not indicating a clear separation of the ran-

domly shuffled response classes. Values in the range of the

margin in the original data were never achieved with any of

the permuted data. This corresponds to a p-value of zero in

the permutation test for our entire objective function con-

sisting of score and margin. We thus can surely reject the

hypothesis that the clusters found on the original data by our

supervised algorithm are irrelevant and just a noise artifact.

Moreover, we observed that the clusters from permuted data

were much larger in size, clearly exceeding the typical size of

between three to nine genes from non-permuted data. For

example, permuted data gave a mean cluster size of 12.5

genes and a standard deviation (SD) of 3.2 for the AML/ALL

distinction on the leukemia dataset. 

The fact that the score has highly non-significant p-values is

at first sight surprising. The reason for this is that the cluster

expression values xC,j in Equation 2 are highly dependent

among the samples j = 1,…,n via the responses yj in the

supervisedly estimated cluster C = C(y1,…,yn) and the sign

coefficients �g = �g(y1,…, yn). This strong interdependence

causes the unusual phenomenon that the null-distribution,

assuming no association between the expression values X

and the response Y, has a substantial probability to score

zero. The margin statistics in Equation 6 has much better

power properties than the score. 

Predictive potential 
In this section, we will evaluate the predictive potential of

the supervised clustering algorithm’s output to see if it could

successfully reveal functional groups of genes. A predictor or

classifier for K different tissue types is a function C(·) that

assigns a class label ŷ , based on an observed feature vector

x. More precisely, the classification rule here will be based

on average cluster expression values x = (xC1
0,…, xCq

K-1) as

K · q features

ŷ = C(x) = C �xC1
0,…, xCq

0,…, xC1
K-1,…, xCq

K-1� � {0,…, K -1}

In practice, the classifier is built from a learning set of

tissues whose class labels are known. Subsequently it can be

used to predict the class labels of new tissues with unknown

outcome. There are various methods to build classification

rules based on past experience and we restrict here on two

relatively simple methods that are well suited for our

purpose. 

Nearest-neighbor classification. An easy to implement

and, compared to more sophisticated methods, impressively

competitive classifier for microarray data is the k-nearest-

neighbor rule [29]. It is based on a distance function d(·,·)
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Table 1

Margin statistics 

Margins m(0) maxl(m*(l)) medl(m*(l)) minl(m*(l))

Leukemia 0.20 0.05 -0.01 -2.41

Breast cancer 1.29 0.23 0.04 -0.82

Prostate 0.05 0.02 -0.04 -0.90

Colon 0.08 0.05 -0.12 -1.39

SRBCT 1.00 0.11 -0.06 -1.16

Lymphoma 1.65 0.14 0.01 -1.16

Brain 1.03 0.32 0.09 -0.29

NCI 2.52 0.44 0.12 -0.91

Margins m(0) from the original datasets, as well as maximal, median and
minimal margins m*(l) from 1,000 permuted replicates , for leukemia data
(AML/ALL distinction), breast cancer data (ER-positive/ER-negative
distinction), prostate data (tumor/normal distinction), colon data
(tumor/normal distinction), SRBCT data (distinction of the Ewing family of
tumors versus three other tumor types), lymphoma data (distinction of
DLBCL versus FL and CLL), brain tumor data (separation of atypical
teratoid/rhabdoid tumors (AT/RTs) against 4 other tumor types) and NCI
data (distinction of leukemia against seven other cancers).

Table 2

Scores 

Scores s(0) minl(s*(l)) maxl(s*(l)) Number of 
(s*(l) = 0)/L

Leukemia 0 0 279 0.41

Breast Cancer 0 0 43 0.91

Prostate 0 0 566 0.17

Colon 0 0 164 0.11

SRBCT 0 0 148 0.26

Lymphoma 0 0 78 0.67

Brain 0 0 11 0.98

NCI 0 0 13 0.95

Scores s(0) from the original dataset, maximal and minimal scores s*(l) from
L = 1,000 permuted replicates, and proportion of shuffled bootstrap trials
where score 0 was achieved. The selection of data was as in Table 1.



for pairs x and x�� of feature vectors. As we consider stan-

dardized gene-expression data here, the Euclidean distance

function

———————

d(x,x�) = ��
i=1

K·q

(xi - x�i)
2

is a reasonable choice. Then, for each new feature vector, the

k closest feature vectors from the tissues in the learning data

are identified and the predicted class is given by majority

vote of the associated responses of these k closest neighbors.

We found a choice of k = 1 neighbors to be appropriate, but

more data-driven approaches via cross-validation for the

determination of k would be possible.

Aggregated trees. Another approach that proved to be

very fruitful in our setting is as follows: When knowing con-

ditional probabilities pk(x) = P[Y(k)=1|X = x], which specify

how likely it is that a tissue with feature vector x belongs to

the kth or one of the other classes, the classifier function is

ŷ= C(x) =  arg
k�{0,…, K - 1}

max    pk�xC1
k,…, xCq

k �, (7)

meaning that a tissue is assigned to the class with highest

probability. In practice, of course, we have to rely on esti-

mated probabilities p̂k (x). A method often applied to this

task is the CART algorithm for fitting classification trees

[30]. The drawback when using it with our supervised clus-

ters as input is that in case of perfect separation of the

tissues in the training data, it only uses one (the first) com-

ponent xC1
k of the feature vector x to determine conditional

probabilities p̂k(x), and does not take into account any of the

useful information about the remaining (q - 1) input vari-

ables xC2
k,…, xCq

k. To improve the tree-based probability esti-

mates, we design a novel technique based on plurality voting

with classification trees, called aggregated trees. The idea is

to fit q trees, one each with the q cluster expression profiles

(components of the feature vector x) that have been found

by our supervised algorithm for a particular binary class dis-

tinction. Each tree casts a weighted vote p̂ki (xC
i
k), i =1,…, q,

for response class k against the rest. Averaging then yields

p̂k(x) = p̂k �xC
1
k,…, xC

q
k� =  

1
--
q

· �
q

i=1

p̂k i �xC
i
k�.

as estimated conditional probabilities, which can be plugged

into Equation 7 for maximum-likelihood classification. 

Empirical study. Because, except for the leukemia and

SRBCT data, no genuine test sets are available, our empirical

study for exploring the classification potential is based on

random divisions into learning and test set as well as leave-

one-out cross-validation. For the latter, we set aside the ith

tissue and carry out cluster identification and classifier

fitting by considering only the remaining (n - 1) data points.

We then honestly predict ŷ i, the class label of the ith tissue

sample and repeat this process for all data we have. Each

observation is held out and predicted exactly once. We can

determine the test-set error by calculating the fraction of

predicted class labels which differ from the true class labels.

Results for the nearest-neighbor and the aggregated tree

classifier and varying number of clusters q are given in

Table 3. 
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Figure 2
Histograms showing the empirical distribution of scores (left) and margins (right) for the leukemia dataset (AML/ALL distinction), based on 1,000 bootstrap
replicates with permuted response variables. The dashed vertical lines mark the values of score and margin with the original response variables.
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It is known from theory (see, for example [31]) that error

rates from leave-one-out cross-validation have low bias but

large variance. Estimating error rates by repeated random

splitting of the data into training and (larger) test sets may

be better in terms of mean squared error. In Table 4 we

report misclassification rates which are based on N = 100

random divisions into a learning set comprising two thirds,

and a test set containing the remaining third of all n data.

We took care that the class proportions were roughly identi-

cal in learning and test set. Also, in every run here, both

cluster identification and classifier construction are carried

out on the training data, followed by honestly predicting the

class labels ŷ i for the test data with the two classifiers and

various number of clusters q. The misclassification rate is

then calculated as the averaged fraction of predicted class

labels which differ from the true one. 

We observe that the error estimates obtained from random

splitting are on a slightly higher level than the ones from

leave-one-out cross-validation. We also see that introduc-

ing some redundancy for the discrimination process by

using additional clusters, that is, increasing q, yields better

performance; but of course, a too large value of q would

exhibit overfitting.

Comparison with classification using single genes.

Does the use of averaged cluster expression profiles from

our supervised algorithm improve the classification results

compared to non-averaged, individual genes? To answer

this important question, we also classified our datasets with

exactly the same genes that were contained in the clusters,

but did not average them. Instead of q average expression

profiles, we then have roughly five times as many single

genes as predictor variables. Misclassification rates from

repeated random splitting are given in Table 5. We observe

that the aggregated tree classifier yields in 54 of 56 cases

better results with cluster averages than with individual

genes as input. Also the nearest-neighbor classifier is in 43

out of 56 cases better when used in conjunction with clus-

ters than with single genes. Note that since the events are

not independent, we cannot use a binomial test for the null

hypothesis of equal performance between clusters and

single genes. An analysis of score and margin of the individ-

ual genes that were used in the clusters shows that most of

them are not the strongest individually for predicting the

tissue types, that is, they individually often only have

mediocre scores and margins, but have very good predictive

power as a group. So far, we gained evidence that our algo-

rithm really identifies functional groups of genes whose
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Table 3

Misclassification rates based on leave-one-out cross validation

Leukemia q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 5.56% 5.56% 4.17% 2.78% 2.78% 2.78% 2.78%
Aggregated trees 5.56% 5.56% 1.39% 1.39% 2.78% 2.78% 2.78%

Breast q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Aggregated trees 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Prostate q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 13.73% 7.84% 4.90% 6.86% 4.90% 4.90% 5.88%
Aggregated trees 13.73% 13.73% 6.86% 8.82% 6.86% 5.88% 5.88%

Colon q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 27.42% 22.58% 22.58% 19.35% 16.13% 17.74% 19.35%
Aggregated trees 27.42% 29.03% 19.35% 19.35% 16.13% 17.74% 17.74%

SRBCT q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.59%
Aggregated trees 3.17% 0.00% 0.00% 0.00% 1.59% 1.59% 1.59%

Lymphoma q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 3.23% 1.61% 1.61% 1.61% 0.00% 0.00% 0.00%
Aggregated trees 3.23% 1.61% 1.61% 1.61% 0.00% 0.00% 0.00%

Brain q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 30.95% 23.81% 19.05% 16.67% 19.05% 16.67% 16.67%
Aggregated trees 42.86% 23.81% 21.43% 19.05% 14.29% 11.90% 11.90%

NCI q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 40.98% 40.98% 36.07% 29.51% 24.59% 27.87% 26.23%
Aggregated trees 49.18% 47.54% 39.34% 29.51% 21.31% 21.31% 19.67%

Misclassification rates for out-of-sample classification with q gene clusters as features, based on leave-one-out cross-validation.



average expression level has high explanatory power for the

response classes. 

Comparison with other studies. We now classify the

breast cancer validation sample of [17], which contains four

randomly chosen tissues plus five instances where two differ-

ent clinical tests for determination of the ER status yielded

conflicting results. We choose the nearest neighbor method

with q = 3 clusters to be our classifier for the validation

sample, as it had the best predictive potential on the n = 38

training data. Our predictions, shown in Table 6, always

agree with the class label provided on the Proc Natl Acad Sci

USA supporting information website [32], which corresponds

to the outcome of the immunoblot assay method. 

Not only the results on the validation sample are very con-

vincing, but the cross-validation on the n = 38 training

tissues is also error free. This is different from the results in

[17] with precedent feature selection, singular value decom-

position and Bayesian binary regression, where 7 of 9 tissues

in the validation sample and 36 of 38 tissues in the training

sample were accurately predicted. Moreover, our result con-

firms that the breast cancer expression matrix contains a

strong signal for discriminating the ER status.

We next used our method to classify the original 34 test

samples in the leukemia dataset. We applied the supervised

clustering algorithm on the n = 38 training data, where we

also fit the best predictor from our random splitting study

(aggregated trees with q = 20 clusters as input features) as

classifier for the independent sample. Our predictions

turned out to be error-free, a result which can be directly

compared to [14], where 29 of 34 observations were classi-

fied correctly by a weighted voting scheme. With support

vector machines, results ranging between 30 to 32 correct

classifications were reported [33]. Moreover, a full leave-

one-out cross-validation on the n = 38 training data (results

not shown) resulted in perfect classification for various q

values; also, the performance for cross-validation on the

entire dataset with n = 72 observations is competitive, com-

pared, for example, to [34].

The SRBCT data contains an additional test set of 20 SRBCT

and 5 non-SRBCT samples. We first classified the 20 SRBCT

tissues with the best classifier from the random splitting

study on the n = 63 training samples, the nearest-neighbor

method with q = 3 clusters as input. The predictions turned

out to be error-free, approving the perfect classification with

artificial neural networks and principal components as in

10 Genome Biology Vol 3 No 12 Dettling and Bühlmann

Table 4

Misclassification rates based on random splitting

Leukemia q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 6.58% 4.62% 4.21% 3.75% 3.33% 3.38% 3.25%
Aggregated trees 6.58% 6.12% 3.71% 3.54% 2.79% 2.71% 2.62%

Breast q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 1.00% 0.75% 0.75% 1.00% 0.83% 1.00% 1.00%
Aggregated trees 1.00% 1.58% 1.67% 2.33% 2.58% 2.42% 3.00%

Prostate q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 14.47% 11.68% 9.62% 7.97% 7.26% 6.94% 6.91%
Aggregated trees 14.47% 16.47% 10.32% 8.79% 8.12% 8.00% 7.79%

Colon q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 23.35% 20.35% 19.10% 16.95% 16.45% 16.05% 15.95%
Aggregated trees 23.35% 21.80% 19.70% 18.10% 16.95% 16.20% 16.45%

SRBCT q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 1.33% 0.48% 0.43% 0.48% 0.76% 0.95% 1.05%
Aggregated trees 5.76% 0.95% 0.71% 1.10% 1.76% 1.90% 2.14%

Lymphoma q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 2.15% 2.20% 1.50% 0.85% 0.65% 0.50% 0.50%
Aggregated trees 3.45% 2.45% 1.40% 0.80% 0.25% 0.20% 0.30%

Brain q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 31.21% 27.50% 26.36% 24.71% 23.86% 23.71% 23.36%
Aggregated trees 35.43% 28.43% 24.43% 22.14% 19.64% 18.29% 16.86%

NCI q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 45.25% 40.25% 37.90% 34.80% 32.10% 30.50% 29.65%
Aggregated trees 51.85% 42.35% 38.05% 34.05% 29.30% 27.75% 26.50%

Misclassification rates for out-of-sample classification with q gene clusters as features, based on N = 100 random divisions into learning set (two thirds of
the data) and test set (one third of the data).



[22], as well as the correct diagnosis obtained with multicat-

egory support vector machines in [35]. As aggregated trees

and the one-nearest-neighbor classifier with q = 3 clusters as

input are not well suited for assessing prediction strengths

on the five non-SRBCT samples, we applied logistic discrimi-

nation and rejected every classification that was done with a

probability lower than 0.95. All five non-SRBCT’s did not

exceed this threshold and were thus correctly rejected,

whereas three of the twenty SRBCT tissues did not exceed it

and could not confidently be classified either, though they

were predicted correctly. Also, this result, as well as our

error rate from leave-one-out cross-validation on the train-

ing data, which achieves the benchmark error rate of 0%, are

consistent with [22,35]. This provides more evidence that

our method can at least keep up with state-of-the-art classi-

fiers such as neural networks or support vector machines.

The five remaining microarray studies do not contain

genuine test sets and we thus compare our error rates from

cross-validation and random splitting against the literature.

The classification of tumor versus normal prostate tissue has

been evaluated with leave-one-out cross-validation [21].

After precedent feature selection, an accuracy of “greater

than 90%” was obtained, a result that can be beaten by our

error rate of 4.90%, which corresponds to five misclassifica-

tions in a total of 102 samples. The colon cancer dataset has

already been considered by various authors, for example in

[34], with classifiers based on single genes such as nearest

neighbors and boosting in a cross-validation study. Our

method does not clearly improve their results, although it

seems to have an edge over them. However, we could not

achieve a cross-validation error rate of 9.68%, as reported in

[33] with support vector machines. The error rates on the

lymphoma, brain tumor and NCI data provide evidence that
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Table 5

Benchmark misclassification rates 

Leukemia q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 6.33% 4.79% 4.50% 4.08% 3.67% 3.75% 3.79%
Aggregated trees 8.50% 6.04% 4.54% 3.92% 4.83% 6.79% 8.46%

Breast q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 1.08% 0.83% 0.92% 1.17% 1.33% 1.50% 1.58%
Aggregated trees 5.42% 2.50% 1.83% 2.42% 4.17% 5.42% 8.33%

Prostate q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 13.24% 10.68% 9.15% 8.44% 7.76% 8.18% 7.85%
Aggregated trees 25.47% 21.29% 18.56% 17.44% 16.65% 17.65% 18.94%

Colon q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 23.40% 21.95% 20.15% 18.90% 16.65% 16.25% 15.70%
Aggregated trees 30.95% 29.70% 30.20% 31.20% 33.55% 34.15% 34.90%

SRBCT q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 1.76% 0.86% 0.81% 1.05% 1.19% 1.43% 1.48%
Aggregated trees 4.38% 2.00% 2.62% 3.95% 6.48% 6.95% 8.43%

Lymphoma q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 2.43% 2.29% 1.76% 1.05% 0.81% 0.81% 0.86%
Aggregated trees 4.38% 2.81% 2.10% 1.00% 0.81% 1.05% 1.24%

Brain q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 30.79% 29.07% 29.50% 27.57% 28.50% 28.00% 27.50%
Aggregated trees 40.14% 35.29% 34.64% 33.50% 34.36% 34.79% 35.29%

NCI q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20
Nearest neighbor 39.63% 34.89% 32.84% 31.95% 30.68% 29.74% 28.95%
Aggregated trees 56.58% 49.53% 44.84% 42.42% 39.21% 39.05% 37.79%

Benchmark misclassification rates for out-of-sample classification with the very same but non-averaged genes from q clusters as features, based on
N = 100 random divisions into learning set (two thirds of the data) and test set (one third of the data).

Table 6

Classification of the breast cancer validation sample

Tumor 14 31 33 44 45 46 47 48 49

Status Neg? Neg? Neg? Neg Pos? Pos? Pos Pos Neg

Prediction Neg Neg Neg Neg Pos Pos Pos Pos Neg

The sample is classified with q = 3 cluster expression profiles based on
the training sample with 38 tumors as features and aggregated trees as
predictor. The status of the tumors is according to the information
provided on the Proc Natl Acad Sci USA website [32]. The question mark
means that two clinical tests yielded conflicting results. Displayed here is
the outcome of the immunoblot assay method.



our method, based on a one-against-all approach, does a

good job in multiclass problems as well. On the lymphoma

data we observe perfect classification, thus achieve the non-

to-improve benchmark. On the brain tumor data, our

minimal cross-validation error rate of 11.90% is superior to

the 16.67% obtained in [26] with a weighted voting algo-

rithm. Many more misclassifications occur on the NCI than

on the other datasets, due to the large number of classes and

their heterogeneity. However, when comparing our predic-

tions to the results in a broad evaluation of classifiers on the

NCI data [16], they prove to be very valuable. We consis-

tently obtained mean error rates of less than 30% with

random splitting, the optimum is 26.50% using aggregated

trees with q = 20 clusters, whereas the best median error

rates reported in [16] are in a range around 35% and higher

(Table 7). 

In summary, our predictions from simple classifiers based

on the supervised clustering’s output can easily keep up with

sophisticated methods that are based on single genes, and as

Table 7 shows, our supervised clusters beat the best reported

results from the literature in four out of eight datasets. On

three further datasets, we achieve the benchmark of perfect

classification. The success of our method may be because the

averaging of genes according to Equation 2 has a variance-

reducing effect and yields more stable and accurate features

for classification. As well as its good predictive potential, the

cluster structure provided by our method is very accessible

for biological interpretation and can be beneficial for func-

tional genomics. 

Stability 
The stability of the gene clusters detected by our supervised

clustering algorithm is a critical issue. The output is much

more useful for functional genomics if it remains unchanged

for ‘similar’ input data. We use the bootstrap as a tool for

assigning statistical significance, see [36]. We assume n

pairs of observations (xi, yi) with binary response yi � {0,1},

from which we form a resampled gene expression dataset 

(x1, y1)*,…, (xn, yn)*

of length n by drawing with replacement from the original

data pairs. We can then apply our supervised algorithm to

extract clusters C1*,…, Cq* out of these resampled data. For an

empirical study, we generated L = 1,000 resampled gene-

expression datasets of size n to explore the compositional

variability of the first cluster C1* in eight binary problems as

detailed in the caption of Table 8. 

We first analyze the variability in cluster size. The results,

summarized in Table 8, show surprising stability across the

eight different datasets. We observe that quite small clusters,

typically made up of three to nine genes, were found. The SD

in cluster size was fairly low in all eight datasets. As a next,

and more difficult, step, we try to explore the compositional

variability of the clusters. To give a rough overview which

proportion of genes is actively present in the clustering

process, we assess a confidence level to each individual gene

i, which measures how likely it is to be clustered,

�i =  
Ni
-----
L

=  1-----
L 

· �
L

l=1

1[gene i � C
1
*(l)],  i = 1,…, p, (8)

where Ni is the number of the L clusters that contain gene i.

The numerical results given in Table 9 show that except for

the colon tumor data, only a minority of genes ever entered a

cluster. Also for the prostate and leukemia data this propor-

tion was somewhat bigger, but still most of the genes never

took part in the clustering process. More important, only a

very small part of the genes is used frequently, that is more

than 50 times in the 1,000 clusters. We conjecture that our

supervised algorithm discriminates phenotypes with a small

core of genes only, and in this sense it is reasonably stable.

We continue by assessing confidence levels to pairs of genes

which gives a clue about pairwise interactions. We count the

number Nij of clusters C1* found with our bootstrapped gene

expression datasets that both contain the genes i and j, and

then divide by the number of replicates L, 

�ij =  
Nij
-----
L

=  1-----
L  

· �
L

l=1

1[gene i � C
1
*(l)] · 1[gene j � C

1
*(l)] , i, j � {1,…, p}.  (9)

These confidence levels not only give an idea how likely the

pairs are, but also provide information for functional

genomics, as we can now analyze whether pairs of genes

preferentially enter clusters simultaneously or not. The

number of hits Ni for individual genes i follows a

binomial(L,�i) distribution (given the data) , and for pairs
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Table 7

Comparison against the literature

Leukemia Breast Prostate Colon SRBCT Lymphoma Brain NCI*

Supervised clustering 1.39% 0.00% 4.90% 16.13% 0.00% 0.00% 11.90% 26.50%

Literature 1.39% 5.26% 9.80% 9.68% 0.00% ? 16.67% �35%

Best leave-one-out cross validation error-rates from our supervised clustering procedure compared to best reported results from the literature where
directly comparable, references are given in the main text. *The mean error-rate on the NCI data is based on random divisions into training and test set,
and compared against the median error-rate obtained under the same framework in [16].



(i,j) we have that Nij is binomial(L,�ij) (we ignore here the

fact that �i in Equation 8 and �ij in Equation 9 are computed

with L = 1,000 replicates instead of the theoretical L = 	. If

there were no attraction or repulsion between genes, the

joint probability �ij would be given by the product �i�j of the

marginal probabilities. By calibrating the observed number

of hits Nij with the binomial(L,NiNj/L) distribution under

independence, we can test the hypothesis

H0 : �ij = �i�j,

and compute the associated p-values. Low p-values indi-

cate significant pairs of genes. Moreover, we also distin-

guish between two genes which are attracting (with Nij

larger than expected under the null hypothesis), and which

are repelling (with Nij lower than expected under H0). We

implemented an empirical analysis based on L = 1,000

bootstrap trials, for pairs made up of the five genes with

the highest confidence levels �i in the discrimination of

lymphoma class 0 (DLBCL) from the other two pheno-

types. Numerical results are summarized in Table 10, clone

numbers and function of the genes are given in Table 11.

Among the 10 pairs, several significant gene pairs that are

strongly attracting or repelling are present; for example,

genes 3786 and 3804 strongly attract each other. More-

over, 78% of the clusters that contained gene 3804 also

included gene 3786, again signifying a special relation

between these two. An interpretation of such facts in the

framework of functional genomics is beyond the scope of

this paper. 

It is now tempting to extend this kind of analysis from pairs

to tuples of third and higher orders. But estimating higher-

order interactions will become very unreliable because of the

limited amount of sample size n. 

Additional modifications 
Our supervised clustering procedure can be understood as a

generic method and allows alteration of various details accord-

ing to the users’ choice and specific demands. We also tried to

improve the supervised clustering procedure ourselves with

additional modifications, the most important of which are

described here. The averaging of the gene expression in Equa-

tion 2 is specified by the arithmetic mean plus sign-flips, a very

simple linear combination of genes, as it is impracticable to

repeatedly optimize a general linear combination such as

XCi
= �

g�Ci 


gXg   with    �
g

|
g| =1 

during the clustering process. But theoretically, once the

cluster algorithm has done its work, we could try to improve

the discriminatory power of the actual cluster by numerically

optimizing a weighted linear combination as above with

respect to score and margin. In practice, we recognized that

the numerical optimization was very difficult. If we started it

with equal weights, they only changed slightly, and the objec-

tive function (this is, the margin) did not improve much.

Because of this we favor the more simple method. 

Since the margin function in Equation 6 is not scale-invariant,

we also considered clustering with an adjusted margin. This

means that we optimized the quotient of margin and within-

group variation for a gene-expression vector �i = (xi1,…, xin), 

Margin (�i)
Adjusted margin (�i) = —————————— .

————————�s0
2/n0 + s1

2/n1
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Table 8

Cluster size

Cluster size Mean SD Min Max

Leukemia 5.855 2.910 1 23

Breast cancer 4.344 2.062 1 13

Prostate 6.327 2.373 2 17

Colon 6.642 2.733 2 20

SRBCT 4.739 1.816 1 14

Lymphoma 5.485 2.679 1 16

Brain 6.094 2.751 1 19

NCI 6.174 2.930 1 20

Variability in size of clusters that have been shaped with the supervised
algorithm, based on 1000 bootstrap replicates. Leukemia stands for
distinction between AML and ALL; in the breast cancer data, the
separation of the ER receptor status has been analyzed; prostate and
colon stand for discrimination of normal versus tumorous tissue; in the
SRBCT dataset, the Ewing family of tumors was separated against three
other phenotypes; for the lymphoma dataset discrimination of DLBCL
against FL and CLL was considered; in the brain tumor dataset AT/RTs
were discriminated from four further malignancies; and in the NCI
dataset, leukemia was separated against seven other cancers. The
presented figures for the four multiclass datasets are representative for all
their binary distinctions between a tumor type against all others.

Table 9

Number and proportion of genes used in the various clusters

Active genes �i1[�i > 0] �i1[�i > 0]/p �i1[�i > 0.05] �i1[�i > 0.05]/p

Leukemia 624 17.474% 18 0.504%

Breast cancer 128 1.803% 9 0.130%

Prostate 949 15.730% 16 0.265%

Colon 1028 51.400% 12 0.600%

SRBCT 68 2.946% 11 0.477%

Lymphoma 279 6.930% 19 0.472%

Brain 345 6.164% 21 0.375%

NCI 227 4.329% 23 0.439%

Number and proportion of genes that ever have been used in the first
cluster C1* (first two columns), as well as number and proportion of
genes that have been used for cluster C1* in more than 50 out of the
1000 bootstrap trials (last two columns). The selection of data is
identical to Table 8.



Here, nk is the size and sk
2 is the sample variance of class

k � {0,1}. While theoretically the size of the gap between

the two response classes is meaningful only in relation to

the within-group variance, the adjustment of the margin

proved not to be very important in practice, owing to the

use of standardized gene-expression data. It did not

improve the predictive performance of the clusters and

slightly decreased their stability. As it is common practice to

standardize expression data, we recommend working with

the non-adjusted margin. 

Our algorithm, as described above, yields disjoint clusters of

genes. To account for the fact that genes may function in

multiple pathways, one could modify it as follows. First, run

the clustering algorithm on the data, producing a first

cluster; second, compute a probability estimate for P[Y =

1|X] for a two-class problem, for example, with probability-

based classification methods or in a logistic model; third,

reweight the data with weights as in the Real AdaBoost algo-

rithm [37]; then return to the first step but now with

reweighted data. Doing the loop q times produces q clusters,

which are allowed to be non-disjoint. 

We also explored the improvement of the supervised cluster-

ing algorithm by biasing it towards larger clusters. Specifi-

cally, we did not stop the forward search when score and/or

margin first worsened, but continued as long as the objective

function remained within a factor of the best. Our intention

was that the objective function could improve again and

reach even better values. As soon as the objective function

once dropped below the tolerance (a factor times the best

ever achieved value), we stopped the forward search and

continued the algorithm with the cluster that yielded the

best parameters ever. Although our first guess was that the

biasing could result in larger clusters with clearer separa-

tion, it rarely ever had any effect in practice.

Conclusions 
We have proposed an algorithm for supervised clustering of

genes from microarray experiments. Our procedure is poten-

tially useful in the context of medical diagnostics, as it identi-

fies groups of interacting genes that have high explanatory

power for given tissue types, and which in turn can be used to

accurately predict the class labels of new samples. At the

same time, such gene clusters may reveal insights into biolog-

ical processes and may be valuable for functional genomics.

In summary, our algorithm tries to cluster genes such that

the discrimination of different tissue types is as simple as

possible. It builds the clusters incrementally and relies on a

fast, stepwise strategy that allows exhaustive searches

among thousands of genes. More specifically, the aim is to

identify sparse linear combinations of genes whose average

expression level is uniformly low for one response class and

uniformly high for the other class(es).

In empirical studies, the average cluster-expression profiles

showed superior classification potential compared to other

techniques where unclustered genes had been used. The

clusters showed reasonable stability and there are several

reasons that point towards their biological significance. They

do not only contain the genes that are individually good, but

groups of genes whose consensus expression profile is best

with respect to the objective function. The predictive poten-

tial of the very same, unaveraged genes cannot keep up with

the prediction potential of the corresponding cluster means.

And, finally, an application of our algorithm to randomly
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Table 11

Functional description of the most frequently clustered genes in
DBLC lymphoma discrimination

Sign Gene Clone Function 

- 3763 769861 CD63 antigen (melanoma 1 antigen) 

- 3786 345538 Cathepsin L 

- 3804 343867 Allograft-inflammatory factor-1
or interferon gamma induced macrophage protein
or ionized calcium binding adaptor molecule 1 

+ 761 1341294 Unknown 

+ 780 1334411 Unknown UG Hs.32553 ESTs 

Clone numbers and function description of the five genes that have been
clustered most frequently in the discrimination of DLBC lymphoma from
the other two phenotypes in the lymphoma dataset.

Table 10

Most frequently clustered genes in DLBC lymphoma
discrimination

Numbers 

Gene 3786 Gene 3804 Gene 761 Gene 780 

Gene 3763 184 (301) 68 (220) 144 (155) 173 (133) 

Gene 3786 289 (187) 153 (132) 72 (113) 

Gene 3804 136 (96) 60 (83) 

Gene 761 40 (58) 

p-values 

Gene 3786 Gene 3804 Gene 761 Gene 780 

Gene 3763 (-) 0.000 (-) 0.000 (-) 0.359 (+) 0.001 

Gene 3786 (+) 0.000 (+) 0.055 (-) 0.000 

Gene 3804 (+) 0.000 (-) 0.007 

Gene 761 (-) 0.015 

The top part of the table gives the numbers of observed and (in
parentheses) expected (under the hypothesis of independence) gene pairs
of the five most frequently clustered genes in the discrimination of DLBC
lymphoma from the other two phenotypes, based on 1,000 bootstrap
replicates. In the bottom part of the table, p-values for attraction (+) and
repulsion (-) of gene pairs from two-sided binomial tests that compare
the joint probability against the product of the marginals are shown.



permuted data shows that the identified structure is more

than just a noise artifact.

An important task that remains to be addressed in future

research is the generalization of the supervised clustering

algorithm to quantitative response variables and to censored

survival data. The fundamental idea of supervised clustering

can be pursued again, but needs alternative objective func-

tions that rank individual genes and gene clusters on the

basis of their explanatory power for non-categorical

response variables. 
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