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Change of plant phenophases explained by survival modeling
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Abstract It is known from many studies that plant species
show a delay in the timing of flowering events with an
increase in latitude and altitude, and an advance with an
increase in temperature. Furthermore, in many locations and
for many species, flowering dates have advanced over the
long-term. New insights using survival modeling are given
based on data collected (1970–2010) along a 3000-km long
transect from northern to eastern central Europe. We could
clearly observe that in the case of dandelion (Taraxacum
officinale) the risk of flowering time, in other words the
probability that flowering occurs, is higher for an earlier
day of year in later decades. Our approach assume that
temperature has greater influence than precipitation on the
timing of flowering. Evaluation of the predictive power of
tested models suggests that Cox models may be used in
plant phenological research. The applied Cox model pro-
vides improved predictions of flowering dates compared
to traditional regression methods and gives further insights
into drivers of phenological events.
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Introduction

Phenology is the study of the seasonal timing of recur-
rent biological events (such as flowering, migration of
birds, and emergence of insects), the causes of their timing
with regard to biotic and abiotic forces, and the interre-
lations among phenophases (developmental stage) of the
same or different species. Drivers of phenological responses
range from macroclimatic circulation patterns (e.g., North
Atlantic Oscillation) (Stenseth et al. 2003) to local envi-
ronmental factors such as photoperiod (Körner and Basler
2010), edaphic factors (Wielgolaski 2001), precipitation (Fu
et al. 2014), and temperature (IPCC 2007). Several studies
have demonstrated significant changes in plant phenological
events in the Northern and Southern Hemisphere (Menzel
et al. 2006; Schwartz et al. 2006; Way 2011; Chambers
et al. 2013). However, there are variations in the trends of
phenological time series caused by phenophases, species,
study periods, and geographical locations. Thus, differ-
ing responses to climate change can result in mismatches
between the timing of plant and insect life cycles that impact
other trophic levels and which may lead to population
declines (Walther et al. 2002).

The phenology of most plant and insect species highly
depends strongly on the thermal accumulation, determined
by daily temperature. Each phenophase of an organism has
its own total heat requirement and there have been many
attempts to predict the onset of plant phenophases using heat
sums. Most of these studies were conducted on agricultural
species, e.g., budburst date in vineyards (Cortazar-Atauri
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et al. 2009), maturation in apricot cultivars (Ruml et al.
2011), or pollen prediction (Garcia-Mozo et al. 2009),
where accurate forecasts are crucial.

Various methods have been tested previously to model
the relevance of environmental conditions for plant
phenophases. Current plant phenological studies either
focus on temporal and spatial characterization of a stage
in the annual life cycle of a plant based on observed or
modeled data or attempt to predict the future timing of
plant stages. Survival analysis is a branch of statistics (see,
e.g., Rodriguez 2007) which deals with the analysis of the
time duration until one or more events happen. Proportional
hazard models—such as the one proposed by (Cox 1972)—
were originally developed for the medical field. In our case,
the event of interest is the flowering time of a plant species
rather than patient survival time. Such models are nowa-
days applied to a broad range of “time to event” data sets
in ecological studies as well (Kleinbaum and Klein 2012).
Examples range from improved understanding of spring
migration phenology (Bauer et al. 2004) and estimation of
population growth predictions for an endangered species
(DeCesare et al. 2013), as well as the development of a
descriptive model for laying dates of birds (Gienapp et al.
2005, 2010).

We attempt to improve our understanding of flowering
time by applying a non-traditional method, proportional
hazard models to plant phenology. We used common dan-
delion as a model organism, because accurate long-term
(1970–2010) data sets from biogeographical regions of
Europe are available for this species. By calculating the
hazard ratio of different climate variables, we showed their
influence on flowering times and tested the predictive power
of Cox models in phenological research.

Materials and methods

Phenological data

Plant phenological time series were collected for the period
of 1970–2010 from northern to eastern central Europe.
These data comprise phenological observations of common
dandelion (Taraxacum officinale L., Asteraceae).

The studied beginning of flowering (BF) event was
defined as “the appearance of the first flowers producing
pollen on at least 10 percent of the observed plants visi-
ble.” This phenophase corresponds to event 61 according
to the BBCH (Biologische Bundesanstalt, Bundessorte-
namt and Chemical Industry) code (Meier 2001). Data
from nine European countries (Finland, Latvia, Lithuania,
Poland, Hungary, Slovenia, Croatia, Bosnia and Herze-
govina, Macedonia), between 40.9–67.9◦ in latitude and
13.6–32.1◦ in longitude, were collected (see Fig. 1). More

Fig. 1 Phenological observation sites and the studied north to south
transect of biogegraphical regions in Europe

precisely, data on common dandelion was taken from the
NS-Pheno database (Templ et. al, 2016, submitted). The
NS-Pheno database includes phenological data collected
from countries along the north-south transect across Europe,
coordinated by the main author.

The database comprises records from the following
national observation networks. Phenological data from Fin-
land were recorded by the National Phenological Network
(Kubin et al. 2007). Estonia has data over years com-
piled by the Estonian Naturalists Society and the Estonian
Environment Agency (Ahas and Aasa 2006). Data from
Lithuania originate from records collected by the Voke
Branch of Lithuanian Research Centre for Agriculture and
Forestry (Romanovskaja and Baksiene 2008). Observations
from Latvia (Grisule and Baksiene 2008) originate from
volunteer-collected sites of the humid continental climatic
zones (Kalvane et al. 2009). The Institute of Meteorology
and Water Management introduced and provided pheno-
logical observations from Poland (Niedz̀wiedz̀ and Jatczak
2008). The Slovak Hydrometeorological Institute collected
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phenological observations from the territory of Slovakia
(Remisovà and Nejedlik 2008). The observational network
of Hungary (Szalai et al. 2008; Szabò et al. 2016) (the
main country of the Pannonian region) was maintained by
the Hungarian Meteorological Service. Phenological data
preserved by the Environmental Agency of the Repub-
lic Slovenia (Crepinsek et al. 2008) were also included
in the database. The phenological network maintained by
the Meteorological and Hydrological Service of Croatia
(Vucetic̀ et al. 2008) covers all of the main climatic zones
(moderate continental, mountain, and Mediterranean) of the
country. From historical reasons, Montenegro has similar
phenological observations (Popovic and Drljevic 2008) to
other former Yugoslavian states. Data were collected from
Bosnia and Herzegovina too; however, the number of obser-
vational sites were affected by the wars in the 1990s (Hodzic
and Voljevica 2008). The southernmost data provider for
this study was Macedonia, which is a mostly unexplored
region in terms of phenological research.

Environmental data

Temperature and precipitation data were obtained from the
E-OBS regular gridded dataset developed by the ENSEM-
BLES EU-FP6 project1 with a 0.25◦ spatial resolution
(Haylock et al. 2008; Hofstra et al. 2009). Temperature data
were available as daily minimum, maximum, and mean in
degrees Celsius. Precipitation were available as millimeters
per day. The temperature data contained some suspicious
observations, where for instance the minimum temperature
was greater than maximum temperature. To err on the side
of caution, such observations were removed from the dataset
before further data processing.

The relationship between growing degree days (GDD)
and the onset of plant phenophases is well known (Cleland
et al. 2007). A degree day is a measure of the amount of
heat that accumulates above a specified base temperature
during a 24-h period. Phenological models are usually based
on accumulated temperature, termed growing degree days,
which were calculated as:

GDD = Tmax + Tmin

2
− Tbase, (1)

where Tbase was chosen as 10◦C for GDD calculations.
The data was collected in nine European countries rep-

resenting five biogeographical regions, namely the Alpine,
Boreal, Continental, Pannonian, and the Mediterranean
(Fig. 1). We included the dataset of these regions from
the European Environment Agency web page.2 The bio-
geographical regions were first defined within the field of

1http://www.ecad.eu/download/ensembles/ensembles.php
2http://www.eea.europa.eu/data-and-maps/data/
biogeographical-regions-europe-1

conservation biology and are useful geographical reference
units for describing habitat types and species which live
under similar conditions (Roekaerts 2002; European Bio-
logical Diversity ETC 2006).

Instead of incorporating the geographical location of the
station into the model (latitude, longitude, altitude), we
stratified the model per station, i.e., we included the phe-
nological stations in the Cox model as strata (see “Data
analysis” section and Eq. 2). For the Cox model, this means
that a separate baseline hazard function is fitted to each sta-
tion. This way we lose the ability to make statements on the
influence of geographic factors on a fine scale, but we mini-
mize the influence of site-specific environmental conditions
on our analysis by the influence of GDDs and precipita-
tion on the beginning of flowering time. Because of the
large numbers of climate and phenological stations that we
have, we can nevertheless interpret the results by biogeore-
gion. This is also the strategy that yielded the best predictive
power of all our attempts.

Data analysis

Dates of the phenological observations were converted to
days of the year (doy) with 1st of January as the starting
point. We found that the collected national phenological
time series (see “ Phenological data” section) were different
in their length because of missing values. To handle this and
to reach the best temporal and spatial coverage possible, the
data were filtered based on the following selection criteria:
(1) the station has at least 10 years of continuous records
and (2) there are at least five stations within one biogeo-
graphical region. This way we created single homogenized
phenological time series for each biogeographical region,
using two-way crossed linear mixed models by using the
pheno R package (Schaber 2012). This approach allows the
aggregation of time series data in an optimal manner [details
can be found in Schaber and Badeck (2002)].

We modeled the influence of climate variables on the tim-
ing of flowering onset as a survival analysis problem. We
fitted the Cox proportional hazards model (Cox 1972) with
time-dependent covariates (hereinafter Cox model), imple-
mented in the R package survival (Therneau 2015). The Cox
model can be used to calculate a hazard ratio for each time
dependent covariate (climate variables). The hazard ratio
can be regarded as the relative risk of an event occurring
at time t . In other words, the relative risk is the ratio of
the probability of an event occurring in the exposed group
(influenced by environmental factors) versus a non-exposed
group.

For the purpose of comparison, we also fitted a Cox pro-
portional hazards model without time-dependent covariates
and a classical linear regression model. We used five-
fold cross-validation to compare the predictive power of

http://www.ecad.eu/download/ensembles/ensembles.php
http://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-1
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the models and reported the mean error (ME) and mean
percentage error (MPE), to indicate whether the forecasts
were biased.

In our case, GDD and precipitation were included in
the Cox model as cumulative time-dependent covariates.
To study whether the influence of these covariates varies
between biogeographical regions, they were included as an
interaction term. In addition, the model was stratified by
station to account for geographical variations in flowering
time. The hazard was thus defined as

hs(t, X) = h0s(t)e
β1X1(t)b+β2X2(t)b (2)

where hs(t, X) is the hazard at time t for stratum (=station)
s, h0s(t) is the time-dependent baseline hazard function for
a given stratum, X contains the covariate vectors X1 (grow-
ing degree days) and X2 = (precipitation), and b is the
vector of biogeoregions.

One of the principal results of this modeling approach
is the hazard ratio—that is in our case the change in risk
of flowering time associated with a unit increase of one of
our covariates (GDD, precipitation). For example, a hazard
ratio of 1.01 indicates a 1.01 times higher risk of flowering
at a given day. Thus, the Cox model can further be used to
predict a flowering risk for any given day of the year (daily
hazard) based on climate data.

We made several attempts to include geographic param-
eters such as longitude, latitude, and altitude into the Cox
model; however, we were not able to produce models that
yielded satisfying predictions. This is likely due to the fact
that those parameters are not sufficient to describe local cli-
matic variations between stations well enough to account
for variations in flowering. To get around this problem, we
stratified the model by stations; thus, we removed all static,
site-specific factors.

All analyses were performed using the statistical soft-
ware and environment R (R Development Core Team 2016),
the pheno package in version 1.6, the survival package
in version 2.38.3., and, for visualization, we used the R
package ggplot2 (Wickham 2009) in version 2.1.0.

Results

In order to calculate the risk of flowering time over Europe,
we determined the long-term trends (1970–2010) of cli-
mate variables, which were included in the fitted models.
We found that the monthly mean, minimum, and maximum
temperatures (previous to the flowering onset dates) showed
significant warming trends in the Alpine and continental
regions. We did not find significant changes in temperature
for the Boreal region from our dataset (but see Mikkonen
et al. 2015). We present results from the Cox model, and
we describe the shift of flowering dates using Kaplan-Meier

curves (Kaplan and Meier 1958). We also compare results
on the prediction of survival dates with a traditional method
(linear regression).

Shift of flowering date and the Kaplan-Meier Curves

An important part of survival analysis is to show the sur-
vival of each group of interest. In our case, various time
periods were handled as groups (see Fig. 2). We visu-
alized the shift in onset of flowering by generating the
Kaplan-Meier survival curves from the phenological data.
The Kaplan-Meier estimator is a stepwise estimator for sur-
vival probability, which in our case can be interpreted as
the probability that common dandelion has already or has
not yet flowered. Figure 2 shows the percentage of indi-
viduals that have not yet flowered at a given point in time.
In general, we can see that the latter the decade the earlier
the flowering date. More precisely, on a given day of year,
the percentages of individuals that have not yet flowered is
less in the following decade than in the preceding decade.
Differences between the last two decades (1990–2000 and
2000–2010) are especially large. The survival curve relating
to the time 1970–1980 period is the exception to this trend,
since the temperatures in the 1970s (mean flowering time
110 and mean temperature (January till August) 9.36 ◦C)
were higher than in the 1980s (mean flowering time 113 and
mean temperature (January till August) 9.19 ◦C).

Cox model for time-dependent covariates

The hazard ratios and corresponding p values from the Cox
model are reported for each covariate in Table 1. The main
feature to note in such a table is whether the hazard ratio
is greater or smaller than one. As mentioned earlier, a haz-
ard ratio of 1.01 for instance means a 1.01 times higher
risk that flowering will happen on any given day per addi-
tional growing degree day. A ratio of 1.01 % is thus not a

Fig. 2 Kaplan-Meier survival curves of Taraxacum officinale indicat-
ing shift in flowering dates over decades
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Table 1 Hazard ratios, the change in risk of flowering time associated
with a unit increase of one of the covariates

Covariates Hazard ratio p value

GDD × Alpine 1.008 0.001

GDD × Boreal 1.016 0.001

GDD × Continental 1.012 0.001

GDD × Mediterranean 1.011 0.001

GDD × Pannonian 1.010 0.001

Precipitation × Alpine 1.000 0.974

Precipitation × Boreal 1.003 0.035

Precipitation × Continental 0.999 0.327

Precipitation × Mediterranean 1.000 0.870

Precipitation × Pannonian 0.999 0.478

The higher hazard ratio value has the larger influence on the flowering
risk, so that it triggers more the timing of flowering. Interaction terms
between the covariates (growing days degree (GDD), precipitation)
and biogeographical regions (see the “Environmental data” section)
were also included in the Cox model. Relationships found to be signif-
icant (p< 0.05) are highlighted in italics. Three statistics were used to
evaluate the model fit: concordance = 0.747 (se = 0.071), R square =
0.004 (max possible = 0.044), likelihood ratio test = 830.4 (on 10 df)

small number since it is—as mentioned before—a higher
risk per day.

Our Cox model found a statistically highly significant
link between GDD and onset of flowering time. This
relationship varies slightly between different biogeograph-
ical regions (see Table 1). For precipitation, the calculated
hazard ratios are ambiguous, because the Cox model found
almost no statistically significant link between precipitation
and onset of flowering. Only a slightly significant (p ≈
0.035) relationship can be shown for the Boreal region,
which is likely an artifact because of the large amount of
data, we have more statistical power, but the effect is not
actually very strong. The likelihood ratio test confirmed that
our model was significantly better than the null model (without
predictors); the LR test statistics equals 830.4, p ≈ 0.

We addressed two questions: (i) How do environmental
covariates affect the relative risk of the onset of flower-
ing? (ii) Is there a significant difference in this risk among
the various regions and time periods? The shift of risk of
flowering time among decades can be seen in Fig. 3. The rel-
ative risk is a measure relative to the mean covariate (GDD,
precipitation, and their interaction with biogeographical
region) value of each stratum (station). It can be observed
that the risk of flowering time is higher for a given date in
the year in later decades. Similarities can be seen between
decades 1970–1980 and 1980–1990, because of similar tem-
perature conditions. Notice also the similarities between the
relative risk and the Kaplan-Meier curves in Fig. 2.

Fig. 3 Relative flowering time risk of Taraxacum officinale averaged
by decades

Prediction of the flowering date

For comparison purposes, we predicted the mean flowering
date from a classical linear regression model, as well as from
a Cox model with and without time-dependent covariates.
The Cox model itself does not directly predict a flowering
date based upon given predictor variables (station, GDD,

Fig. 4 Predicted against observed mean flowering dates (doy) of
Taraxacum officinale. For comparative purposes, the four cases indi-
cate results from the median observed doys for each station against
original observations (Median), the traditional regression model (Lin-
ear Regression), the Cox model without time-dependent covariates
(Cox (prop.hazard)), and the Cox model with time-dependent covari-
ates (Cox (time dep. covar.))
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precipitation), but rather gives the probability that plants
have not yet flowered by a given day. The mean predicted
flowering date we use for our prediction is the date where
there is a 50 % chance that the plant has flowered.

The results are visualized in Fig. 4. The predicted mean
flowering of common dandelion correlated the best with
the observed dates for the Cox model with time-dependent
covariates (≈ 0.89, see Fig. 4). Naturally, model deviations
are highest for observations that depart from the bulk of the
data. In our case, this mainly occurred with observed flower-
ing dates earlier than day 45 and a few late flowering dates.
According to Fig. 4, it becomes obvious that the Cox model,
especially the one with time-dependent covariates (bottom
right), gives better fit also to the extremes of the distribution
as the traditional linear regression model (top right).

Table 2 shows several estimates of prediction accuracy
based on stratified fivefold cross validation. We can see that
the Cox model for time-dependent covariates outperforms
the other models in terms of the root mean square error
(RMSE), the mean absolute error (MAE), and the mean
absolute percentage error (MAPE).

Discussion

Plant phenological responses are well documented across
the Northern Hemisphere (Menzel et al. 2006; Schwartz
et al. 2006) since such phenomena are sensitive to varia-
tions in climate, especially to temperature, as highlighted by
recent studies on the ecological consequences of global cli-
mate change. Observed climate trends and future scenarios
show regionally varying changes in temperature and precip-
itation in Europe (Kovats et al. 2014). Temperature increase
in the Alpine region is expected to accelerate in the next cen-
tury (Gobiet et al. 2014). We also detected warming trends
(1970–2010) in two (Alpine and Continental) of the studied
five biographical regions in Europe.

Table 2 Estimation of prediction accuracy using fivefold cross valida-
tion for the following models: (1) the median of the observed flowering
date of each station (baseline model), (2) a simple linear regression
model (classical modelling approach), (3) the Cox proportional haz-
ard model (without time-dependent covariates), and (4) the Cox model
with time-dependent covariates

RMSE MAE MAPE

Median 12.84 9.72 10.51

Regression 11.01 8.52 9.10

Cox (prop.hazard) 11.71 8.92 9.53

Cox (time-dep. covar.) 10.46 7.44 8.07

RMSE root mean square error, MAE mean average error, MAPE mean
average percentage error

Predictions of future warming necessitate further devel-
opment of tools to better understand plant phenological
responses, and this includes the testing of potentially useful
non-traditional methods. Relative risk is a known terminol-
ogy in epidemiology to describe the likelihood of devel-
oping a disease, as well as in environmental management
to assess ecological risk. We present an application of this
approach to the prediction of flowering time, by calculating
the probability of flowering onset date by survival model-
ing. In general, survival models investigate follow-up time
from a defined starting point to the occurrence of a given
event (Bewick et al. 2004).

Compared to traditional linear regression, a major differ-
ence, and advantage of survival models is the possibility of
including time-dependent (time-varying) covariates. These
are predictor variables (in our case GDD and precipitation)
whose values may change over the course of observation.
Classical phenological models estimate plant developments
by accumulating degree days between temperature thresh-
olds throughout the season. The accumulation of degree
days from a starting point can help to predict when a phe-
nological stage will be reached. Similarly, survival models
are able to integrate more environmental variables, but with-
out the requirement to aggregate them. This is advantage,
because of the usage of daily data (Pau et al. 2006) and the
avoidance of the modifiable temporal unit problem (Jong
and Bruin 2012). Based on the assumption that the proba-
bility of a phenological event happening can be interpreted
as a survival event, we calculated the relative risk of flow-
ering time for common dandelion across biogeographical
regions in Europe. To our knowledge, this method has only
been tested on bird phenological data (Gienapp et al. 2005;
2010; Visser et al. 2006; Williams et al. 2015) so far. Thus,
the potential of this application is yet to be recognized by
the plant phenological community.

Zeng et al. (2015) investigated recent changes in phenol-
ogy over northern high latitudes from multi-satellite data.
They found that the period 2000–2010 was associated with
an advanced start of the growing season (SOS) of larger
magnitude than the SOS trends of the 1980s and 1990s.
Similar to these findings, based on the Kaplan-Meier esti-
mation, we have found that within each decade since the
1980s, the timing of flowering of T. officinale has shifted
towards earlier dates in Europe. By introducing survival
curves to phenological research, it is possible to compare
the timing of phenological phases by decades, locations, and
species. There is potential in the development of the method
to estimate the change in phenological phases under various
climate scenarios (Gienapp et al. 2005).

There is evidence from a wide range of taxa and across a
wide range of geographic locations that phenological events
in spring have been happening earlier in recent decades
(Sparks and Menzel 2002; IPCC 2007). As is the case for



Int J Biometeorol (2017) 61:881–889 887

most of the spring phenophases, flowering date of com-
mon dandelion exhibits a stronger phenological response
to temperature in warmer than in colder countries (Menzel
et al. 2006; Jatczak and Walawender 2009). But what are
the driving factors of such response? Phenology uses envi-
ronmental cues to attune flowering to appropriate seasonal
conditions (Tookey and Battey 2010). Several covariates
(North-Atlantic Oscillation, precipitation, temperature, pho-
toperiod, snowmelt) have been determined as appropriate
predictors for flowering onset. In the case of common
dandelion, we documented no significant influence of pre-
cipitation on the timing of flowering across biogeographical
regions in Europe. Fu et al. (2014) showed that the GDD
requirement for vegetation green-up onset plays an impor-
tant role at higher latitudes along the geographical coordi-
nates of 35◦–70◦. Our findings confirm the significant effect
of GDD on plant phenology (Cox 1972).

We aimed, not only just to give a temporal-spatial
description of climatic drivers of flowering onset dates
across Europe but also to compare various models that can
be used to predict phenological events. The forecasting of
ecological responses to climate change represents a major
challenge for many reasons (Cook et al. 2010), such as sys-
tematic errors in simulations (Migliavacca et al. 2012). Our
work demonstrated that Cox models can compete with tra-
ditional regression models or even outperform them. We
find that survival models can be a fruitful extension to
well-established traditional approaches in phenology. How-
ever, the approach needs further testing, to assess whether
it can be generalized for any other phenophase of living
organisms.
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Remisovà T, Nejedlik P (2008) History and present observations in
slovak plant phenology. In: Nekovar J, Koch E, Kubin E, Nejedlik
P, Sparks T, Wielgolaski FE (eds) COST Action 725 - The history
and current status of plant phenology in Europe. COST Office,
Brussels

Rodriguez G (2007) Lecture notes on generalized linear models chap-
ter 7: survival models. Technical report, Princeton University,
http://data.princeton.edu/wws509/notes/

Roekaerts M (2002) The biogeographical regions map of Europe:
basic principles of its creation and overview of its development.
Technical report, European Topic Centre Nature Protenction and
Biodiversity, European Environment Agency

Romanovskaja D, Baksiene E (2008) Phenological investigations in
Lithuania. In: Nekovar J, Koch E, Kubin E, Nejedlik P, Sparks T,
Wielgolaski FE (eds) COST Action 725 - The history and current
status of plant phenology in Europe. COST Office, Brussels

Ruml M, Milatovic D, Vulic T, Vukovic A (2011) Predicting apricot
phenology using meteorological data. Int J Biometeorol 55:723–
732

Schaber J (2012) Pheno: auxiliary functions for phenological data
analysis. R Foundation for Statistical Computing; package version
1.6

Schaber J, Badeck FW (2002) Evaluation of methods for the combina-
tion of phenological time series and outlier detection. Tree Physiol
22:973–982

Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier
across the Northern Hemisphere. Glob Chang Biol 12:343–351

Sparks T, Menzel A (2002) Observed changes in season: an overview.
Int J Climatol 22:1715–1725

Stenseth NC, Ottersen G, Hurrell J, Mysterud A, Lima M, Chan
K, Yoccoz N, Adlandsvik B (2003) Studying climate effects on
ecology through the use of climate indices: the North Atlantic
Oscillation, El Nino Southern Oscillation and beyond. Proc Royal
Soci London Ser B: Biol Sci 270:2087–2096
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