
 P 1/12

D. Duendar, L. Hegetschweiler, M. Meli; Zürich University of Applied Sciences, ZHAW-InES
Presented at European ZigBee Developer’s Conference, Munich November 2014. WEKA Fachmedien

 Traffic analyzer front-end for complex
IEEE 802.15.4 applications

Dario Duendar, Lukas Hegetschweiler, Marcel Meli
Zurich University of Applied Sciences

Institute of Embedded Systems
Winterthur, Switzerland

Contact: Marcel.Meli@zhaw.ch

Abstract— The last years have seen a proliferation of the use
of wireless communication in different applications. The systems
range from simple 2-nodes communication to complex mesh
systems capable of covering vast areas. Debugging such systems,
especially large mesh networks can be a daunting task. There are
few tools that can help. In this paper, we present and discuss the
results of a monitoring tool we are developing. The system is
modular, based on a deterministic multicore processor. In the
proof of concept, each monitoring probe is equipped with several
IEEE802.15.4 transceivers, making it possible to monitor several
wireless channels at the same time and to implement a mitigation
of diversity issues in the monitoring. The transceivers could also
be used to generate test frames for the system under test if
necessary. The parallel architecture makes it easy to add new
modules and to synchronize the sniffers with the most
appropriate methods. In this phase of the work, we used DCF77
to synchronize the nodes. The collected data is sent to a common
host for analysis with appropriate tools. The results show that the
architecture is appropriate and that synchronization should be
improved.

Keywords—802.15.4; ZigBee; microcontroller; XMOS; parallel
processing; antenna diversity; sniffer; mesh networks;6LoWPAN;

I. INTRODUCTION AND MOTIVATION
Properly debugging wireless mesh networks such as those

based on IEEE802.15 can be a very challenging task. Reliable
observation of the communication frames is needed. Near a
good software analysis tool, a front-end for the reliable capture
of the traffic is vital. Several tools exist, but they are limited to
the immediate surroundings of the transmitting nodes. Mesh
networks can cover large areas. The propagation difficulties
and variations associated with wireless communications dictate
the use of several monitoring devices at the right places. The
monitoring probes must be fast enough to capture as many
important details as possible. To allow a correct time
interpretation, those monitors should also have the same time
reference.

We present a monitoring tool we are presently developing
and discuss the first results. The system is based on a multicore
processor. Each sniffer is equipped with many transceivers,
giving it the ability to monitor several wireless channels at the
same time and to mitigate RF diversity issues. The transceivers

can also be used to generate test frames for the system under
test. The parallel architecture makes it easy to add new
modules and to synchronize the sniffers with the most
appropriate methods. The collected data is sent to a common
host for analysis with appropriate tools.

In our teaching and R&D work in the past years, we have
often been confronted to the problem of good, easy to deploy
and reliable wireless sniffers. With existing tools one also often
misses important details because monitoring is slow or because
of interference or multipath issues.

• It is important to equip our teaching laboratories with
a device where students can observe the traffic of the
different wireless systems that are used. The nodes
can be placed at crucial locations and the sniffed data
sent on a main server for visualization by all that have
the authorization. This will obsolete the need of
student having an individual sniffer tool. It will also
enable all to see the same thing.

• In the case of our research activities, a tool that can
easily be configured to deal with new wireless
systems will have much value. The coverage of large
areas will also help in the developing of mesh network
strategies and help make the right decisions for the
energy optimization of low power nodes.

• Because of the nature of wireless, repeaters are often
needed. Determining their position is no easy task. A
scaled down version of the distributed sniffer will also
be useful for the installation/debugging of wireless
networks in different industrial and commercial
applications.

The rest of this document is divided as follows:

• A short paragraph will give references to similar
works or tools.

• We will present the design in general terms, showing
how modularity has been achieved.

• We will describe the proof-of-concept system.

• The last part will deal with the results of some tests.

 P 2/12

D. Duendar, L. Hegetschweiler, M. Meli; Zürich University of Applied Sciences, ZHAW-InES
Presented at European ZigBee Developer’s Conference, Munich November 2014. WEKA Fachmedien

II. PREVIOUS WORKS
There have been several attempts to develop tools for

monitoring wireless traffic. An interesting analysis can be
found in reference [14]

There are some commercial tools that can be used to
monitor wireless WPAN traffic. However, we do not know of
any commercial instrument that can really achieve a distributed
monitoring of WPAN with the flexibility that we need.

References [12, 18] list some systems and analysis tools
that can sniff several 802.15.4 (or Ble) channels. They rely on
existing USB dongles. Several dongles can be connected on a
hub in order to allow a local monitoring of many channels. The
time synchronization is achieved by using a dongle to generate
a master time. These tools might do for monitoring devices that
are in the vicinity of the hub. But they do not support
distributed monitoring.

Various chip manufacturers such as Texas Instruments,
Atmel or Microchip also have tools that can be used to monitor
1 channel of 802.15.4 traffic, or Ble traffic [3,4,11].

The commercial device in [19] allows a broadband
monitoring of all Ble channels, but does not allow distributed
sniffing.

In some research projects, elements that go in the direction
that interests us have been developed. However, they do not
have the flexibility or reliability or precision we require
[14,15,16].

Some projects have been done at our own Institute, to
prepare the way for this work [13,20,21,22].

The closest to what we need comes from [17]. They have
built elements that can be used for distributed sniffing,
achieving a synchronization in the order of 1µs with the use of
PTP. This however requires appropriate network switches in
the Ethernet network. The monitoring probes rely of FPGA
hardware, which somehow restricts the flexibility.

III. REQUIREMENTS
Some requirements have been identified as important for

the whole system.

Needed is a modular architecture allowing monitoring
probes to be placed wherever is needed, in order to “sniff the
communication” and report it back. 3 main elements are
required for each monitoring probe:

• One or several elements capable of reading the
information exchanged by communicating nodes. This
will normally be a receiver. In order to deal with
different WPAN systems, it should be possible to
easily replace the radio or even to mix radios to allow
the simultaneous monitoring of different WPAN.
This could be useful to observe the impact of
interferences in the same environment.

• The system should allow the easy integration of one
or more elements for time synchronization. This
flexibility will make it possible to synchronize the

sniffers using the most appropriate method in a given
setting.

• A way of sending data to the central analysis tool.
Optionally, a way of receiving data/commands from
that tool. This can be wired, wireless or even be a
logger.

Each probe should support the monitoring of several
channels and allow a channel to be monitored on several
receivers. This will help counter some RF effects like diversity.

IV. GENERAL CONCEPT
The general concept can be summarized as a “network of

sniffers” (NS). Each sniffer (SF) is made up of one or more
monitoring probes (MP), allowing it to monitor identical
channels, different channels or a mixture. The probes are built
as peripherals of a parallel processor (sometimes called XMOS
here). Several XMOS processor boards can be connected
together on the same sniffer in order to increase the number of
monitoring probes. Each sniffer has a local timer that keeps
time for each probe. Each sniffer also incorporates a network
time synchronizer (TS) that allows the different timers to be
synchronized. Each sniffer sports a communication channel
that is used to send collected data to the data processing server
(PS) for computing and visualization. The processing server
can also send configuration information and commands to the
different elements in the sniffer network. In many cases, the
data will be transported via Ethernet. It is however also
possible to use another communication interface for the host or
even to save data on local mass storage.

The monitoring probes are communication transceivers.
They can be exchanged to support different wireless standards
or even mixed to allow the simultaneous monitoring of
different WPAN communication systems. Especially targeted
are systems in ISM bands (2.4 GHz and 868 MHz), 802.15.4
based schemes (6LoWPAN, ZigBee …) Ble, proprietary
systems.

The synchronization module can also be adapted according
to the environment. For instance, GPS modules could be used
if the reception of the signals is good enough. One could also
implement PTP (IEEE1588) in each sniffer if this is fitting with
the network that is used for the data transfer. In this work, we
decided to try the use of the DCF77 radio clock. Thanks to the
use of low frequency carrier, it is a good option for areas that
are poorly covered by GPS.

Central to the whole concept is the parallel processor
architecture developed and commercialized by the firm XMOS
[5]. That architecture allows a deterministic use of the CPU
resources in parallel processes. This is crucial for the tasks
needed in the sniffer and the flexibility that we want. There are
several versions of that processor architecture that would allow
sniffers with more or less resources to be built. It is also
possible to connect several XMOS together and use their
special features for data or time sharing.

The distributed sniffer architecture described above allows
many options. For a practical proof of concept, we built a
system to monitor IEEE802.15.4 networks. We based it on a
development board from XMOS, available on the market [6].

 P 3/12

D. Duendar, L. Hegetschweiler, M. Meli; Zürich University of Applied Sciences, ZHAW-InES
Presented at European ZigBee Developer’s Conference, Munich November 2014. WEKA Fachmedien

That board has some restrictions, but is good enough for the
first steps in implementing the network sniffer. That system is
continually improved. The results will be used at a later stage
for the implementation of a better version.

We will first describe the main elements of the basic sniffer
and then present some tests results.

Fig. 1. Block diagram showing the monitoring system as a whole.

A. The XMOS processor board
Every sniffer is built in a modular way, equipped with 1 or

more slicekit boards (SK). The slicekit we used integrates a
XS1-L16-128 XMOS processor [5,6]. It can accommodate 4
slices. A slice is a hardware part that can be plugged into a SK
board. Every SK board has 4 slots to extend the board with
slices. There is also an additional interface for programming or
debugging. In this project we have used the following slices:

• The Ethernet slice (max one per sniffer). This is used
to enable an Ethernet connection and send the sniffed data to
the server.

• The time synchronization slice (max one per sniffer).
This is used to synchronize the different sniffers. In a first
version, the time synchronization uses a DCF77 receiver.

• The radio slice (any number per sniffer). Radio slices
contain an 802.15.4 radio, used to listen to the wireless
communication traffic. Every radio slice can monitor only 1
channel at the time. The radio slice in this project use the
Atmel RF233 transceiver [2]. They were developed in an
earlier work [10].

SK boards can be cascaded. The second SK can be plugged
into the special slot of the first one through its debugging /
programming jack. In this way, it is possible to chain an
arbitrary number of boards. Since each of these boards has free
slots for two more radio slices, it is possible to add as many
radios to a sniffer as channels that should be sniffed. It is also
possible to sniff a channel with more than one radio slice.

A large number of sniffers can be connected to the server.
In practice, we can have 255 since we use 1 byte in the
protocol for sniffer identity. This can easily be increased by
modifying the protocol and allowing for say 2 address bytes. It
is evident that the network needs to be fast enough to allow the
transfer of all sniffed data.

The user is completely free to set a single sniffer with
several radio slices up and to place sniffers wherever he wants,

as long as the needed Ethernet connection and signal for
synchronization are available.

An IPv6 network is used to deliver the sniffed data to the
server [9]. IPv4 is also possible for the XMOS processors. This
should be good enough for most cases where an Ethernet
network is available. It will also be possible to implement
another physical communication channel for the link between
sniffers and the host controller (CAN, WLAN, Wireless …).
What would be needed is the corresponding slice and
appropriate firmware.

A Linux computer can be used as server. It should run
python and Wireshark. The data received from the sniffers is
processed and piped. In Wireshark, this pipe is set as network
interface and every processed packet appears on the well-
known Wireshark GUI. Wireshark can handle large amounts of
data, comes with powerful filter functions and will present the
data in an acceptable way.

B. The XMOS processor
The 32-bit microcontroller we used has two physical cores,

each with 8 logical cores. Every core can execute independent
instructions.

Fig.2 shows the block diagram of the XS1-L16-128-QF124.
The two physical cores effectively run in parallel, while the
eight logical cores on them run in time slices, organized by a
hardware scheduler. This guarantees a minimum number of
MIPS per logical core, which defines the XMOS as a
deterministic system. The minimal number of MIPS per logical
core is equal to the total available 1000 MIPS divided by the
number of active logical cores. However, no logical core can
get more than 125 MIPS (8 of 16 cores active).

Fig. 2. Block diagram of the XMOS processor used

 P 4/12

D. Duendar, L. Hegetschweiler, M. Meli; Zürich University of Applied Sciences, ZHAW-InES
Presented at European ZigBee Developer’s Conference, Munich November 2014. WEKA Fachmedien

C. Start-up
When a sniffer is powered on, the time synchronization part

starts receiving the DCF77 time signal. While waiting for a
valid DCF time to be received, a local timer is started. It is used
to timestamp the arriving packets. At the same time, the
Ethernet part connects to the server whose IP address is read
from the settings on the sniffer.

Upon receiving a wireless frame, the receiver gets a time
stamp from the time synchronization slice and delivers the
received data together with the time stamp to the Ethernet slice.
The Ethernet slice sends all the received data to the processing
server using TCP. Finally the server converts the raw data and
the corresponding time stamp to blocks that can be understood
by Wireshark. This is written in a pipe on which Wireshark is
listening.

D. Synchronisation
Synchronizing the sniffers is an important aspect. The goal

is a time synchronisation with 1µs (or less) accuracy. Although
this could be achieved with GPS, we chose to work with
DCF77 in order to gain some experience with that method and
compare it with others. The main advantage of DCF77 is the
fact that the signal can be received in places where it is not
possible to get GPS signals. DCF77 is basically very accurate
(1 second lost in every 20’000’000 years [8]). It is not
worldwide available, but covers most of Europe (2’000
kilometers around Frankfurt am Main [7]). Similar systems
exist in other areas. The DCF signal delivers a rising edge
every second.

Several problems appeared during the implementation of
the DCF time synchronisation. One of them is the jitter of
about 10ms on the rising edges of the second pulse that is used
to adjust the internal timer of a sniffer (our own measurements)
Reference [8] gives 30ms while considering other parameters.
Despite its accuracy, the DCF77 signal reception can be marred
with delays. One reason is the architecture used by low cost
receivers. Propagation issues also play a role. It is clear that
this affects the synchronisation of sniffers.

There are ways to minimize the effects of this problem. For
example with a digital signal processing (DSP) based solution.
This solution delivers an accuracy of ± 250 µs [23].

We tried an averaging method to reduce the effect of jitter.
However, in this phase of the work, we decided to first
concentrate on the architecture issues of the distributed sniffer
network.

Fig. 3. Difference of the second start edge between two independent DCF

receivers (Min: -9.987 ms, Max: 9.983 ms).

E. Data structure
When data is received it will be saved in a local buffer

immediately, in order to remain ready for the next packet. The
radio process can receive 3 frames (3 receivers are connected).
Data are kept in a buffer that is large enough to allow the use of
TCP. (See Fig.6 Data flow)

Every received packet is stored in the frame buffer with the
structure shown in Tab. IX (packet structure table).

The timestamp contains the whole DCF time of the
received packet. The value of the internal timer is used to get to
the microsecond level. ED is the Energy Detection information
that can be read from the radio. LQI gives information about
the quality of the reception. As it is possible to add more
sniffers in a distributed network, a sniffer and radio identity is
added to have information about who received the displayed
frame. The whole results in an overhead of 13 Bytes for every
packet.

V. MEASUREMENTS AND RESULTS
In order to test the system, measurements were made at

several levels.

In a first category, tests were done on the SK board to
measure the performance of the embedded system. Since time
stamping and the discharge of the receiver FIFO is done under
firmware control, it is important to establish the limits of the
system. This helps to determine the local time stamping delays
in function of the number of receivers connected and shows
how many receivers one could realistically expect to attach to
current hardware.

In a second category of tests, different configurations of the
sniffers and monitoring probes were tried. Data was captured
and sent to the monitoring PC for display using Wireshark.

A. General set up
For testing purposes a wireless (802.15.4) node was

programmed to send 2 types of payloads. In one case, frames
as short as 5 bytes were used. In a second case, frames built

 P 5/12

D. Duendar, L. Hegetschweiler, M. Meli; Zürich University of Applied Sciences, ZHAW-InES
Presented at European ZigBee Developer’s Conference, Munich November 2014. WEKA Fachmedien

with the maximum of 127 bytes were used. In both cases, test
could be made with a minimal Inter Frame Spacing of 228 µs.

Although frames as of 5 bytes do not seem to make much
sense, we used them to observe the reaction of the system to
frames coming at high speed. The minimal frame spacing of
228 µs was dictated by the limits of embedded system node
used to generate the frames.

B. Single radio unloading performance.
The receiving process runs on one soft core of the SK

processor. It can react directly to the end-of-frame event. It
immediately starts unloading the frame, over SPI. The SPI
clock speed was set to 6.25 MHz. This speed is sufficient to
get the packet and additional information before a next frame
arrives (receiving time includes the writing of data in the local
buffer).

Payload IFS (µs) unloading time (µs)
5 Bytes 228 27
127 Bytes 228 222.5
TABLE I.

At maximal payload length of 127 Bytes the XMOS needs
almost all the IFS time to read out the packet via SPI. An
overlap with the next incoming packet is not a problem as long
the readout is faster.

Fig. 4. Block diagram showing the monitoring system as a whole.

C. Single radio unloading multi-frame performance.
Multi-frame performance tests were made by sending

several frames containing a payload of 5 bytes. The same was
also done with frames containing a payload of 127 bytes.
Frames were separated by 228µs. The packets were sent to the
sniffer on channel 26. 10’000 frames were sent and the number
of received frames counted.

We used our sniffer to collect the results. 2 other sniffers
found on the market were used to monitor the same channel.

The Atmel AVR RZ USBstick sniffer [3] and the TI
CC2540 sniffer [11]

The results are shown below (Table II).

Frames
sent

Payload
(bytes)

xmos
Sniffer

TI sniffer Atmel
sniffer

10000 127 10000 5000 9998
10000 5 10000 10000 1179
TABLE II.

It can be clearly seen that the 2 other sniffers (from TI and
Atmel) are not capable of unloading the received frames fast
enough. For that reason, some frames are lost.

At maximal payload, the TI CC2540 seems to drop every
second packet. The AVR RZ USB Stick has troubles with the
short inter frame interval when small frames are sent. The
XMOS sniffer received all packets as expected.

D. Multi-radio configuration.
Extending the sniffer with one additional radio is easily

done. One additional logical core is needed to run the
corresponding process. It runs independently of the other
processes.

In the worst case configuration, two (or more) radio on the
same sniffer will receive the same packet at the same time
(same 802.15.4 channel). The two receiving processes
influence each other on two points. Firstly, both have to take
the timestamp at (nearly) the same time. Secondly, they have to
copy the packet into the data buffer. This can be a source of
delays.

E. Time delay in time stamping for multi-radio configuration.
When a frame arrives on a sniffer, the start-of-frame

interrupt is activated and a timestamp is immediately saved. It
is later attached to the radio frame. To save the timestamp
immediately, the receiving module asks the synchronization
module for time information. Saving the actual timestamp
takes less than 1µs. What happens if several radios receive a
packet at exactly the same time and the receiving tasks ask the
synchronization module for a timestamp? We attempted to
create such a scenario and investigate the behavior of the
system.

Two receivers on the same sniffer were configured to
monitor the same channel so that every packet on this channel
should be registered twice (once on each radio). The
measurements on Fig. 5 shows the duration from the request to
save the actual time (rising edge) until the time is saved (falling
edge).

Receiver0 (yellow) requests the timestamp before receiver1
(green). The timestamp for receiver0 is saved immediately, but
receiver1 has to wait until the synchronisation module has
processed all data for receiver0. The delay between the time
stamp request of receiver1 to the completion of the request
amounts to about 2.55µs.

A5 bytes frame is unloaded via SPI in 27µs
 (scale: 100µs/div)
For 127 byte frame, 222.5 µs are needed

Frame
Rx Start

 P 6/12

D. Duendar, L. Hegetschweiler, M. Meli; Zürich University of Applied Sciences, ZHAW-InES
Presented at European ZigBee Developer’s Conference, Munich November 2014. WEKA Fachmedien

Fig. 5. Block diagram showing the monitoring system as a whole.

This can lead to a difference of 1 to 3 us (worst case,
because of microsecond rounded values) between the recorded
timestamps for the two packets. It could also happen that
receiver0 requests the timestamp first; this depends on the
interrupt signal of the radio. The rising interrupt signals of the
receiving radios are delayed by up to 1µs (different physical
cores). This leads to the following worst case timestamp shift
for the same packet on the same sniffer:

MAX_SHIFT = Max time stamp completion time + Max
interrupt delay = 3µs + 1µs = 4µs

A measurement with 10’000 sent packets that were sniffed by
two radios on the same sniffer is shown on table III

Timestamp
shift (µs)

Number
of packets

Percentage

± 0 0 0.00
± 1 7185 71.85
± 2 2814 28.14
± 3 0 0.00
± 4 1 0.01

TABLE III.

The table shows the local delay of time stamps taken for
the same packet with the same sniffer but different radio
modules. The results prove the calculation for the
MAX_SHIFT.

It seems logical, that the duration of the second timestamp
should not take more time than two times the duration of the
first timestamp. In fact, there is an overhead due to the XMOS
internal communication which claims some time delay.
Receiver1 is on another physical core than the synchronization
module and receiver0. Therefore more internal communication
and synchronization of the two processes across the physical
cores is necessary for the timestamp of receiver1.
Consequently, the timestamp completion of receiver1 takes
1.35µs in minimum and that of receiver0 only 830ns.

These delays can be reduced by optimizing the time
stamping routine and by placing all radios on the same logical
core. This will be done as work on the project progresses.

F. Multi-radio configuration performance
Timestamp that is saved at a start-of-frame event is copied

and attributed to a frame only if the equivalent end-of-frame
interrupt is seen. The packet is read out of the radio. The
timestamp, sniffer information and information about reception
quality are added to the data (13 Bytes overhead). The whole
information block is then copied into the frame buffer (Fig.8).

The packet is copied in the buffer before a new packet
arrives. In the case of 127 bytes the start-of-frame interrupt
arrives just after the copy (more time needed for larger frames).
If more radios are added, the process will overlap an incoming
packet. This is not a problem as long the end-of-frame does not
occur before the packet is copied. In the case of 127 bytes, that
happens more than 4ms later.

The receiving procedure was tested with good results.
10’000 packets were sent and received in both radios. This is
shown by the total of received packets which is twice the
number frames sent by the test generator.

Packets
sent

Payload
(Bytes)

XMOS Sniffer (reception
on both radios)

10000 127 20000
10000 5 20000

TABLE IV.

G. Multi-radio configuration: TCP Buffer performance
All the data that is unloaded from the radios must be saved

in a bigger buffer. The data buffer is a process that can be
called by the radio software module. It gets all the packets and
stores them in a 32kB buffer. The data buffer then calls the
TCP process to send it out as fast as possible.

Moving the packet in the data buffer must be faster than the
receiving of new packets in the radios. Fig. 9 shows the time
needed to copy packets received from 2 radios at the same
time. The packets are updated with the extra information
described in Packet structure.

The XMOS memcpy instruction is very fast as soon as it is
started. That is useful in the case of large frames. In the case of
small packets, the processor is also busy communicating and
waiting for the corresponding process to be ready.

H. Sniffer total time performance
The total time performance of the sniffer, from the end-of-

frame interrupt until the packet is in the Data Buffer ready to
be sent by the TCP was measured. TCP is considered fast
enough to handle the throughput of two receiving radios
(2*250 Kbit/sec).

The tests were made with the testing node sending as fast as
possible (IFS of 228µs). All radios are listening on channel 26.
The mean of all measurements were taken. In the case of two
radios the worse value was taken.

 P 7/12

D. Duendar, L. Hegetschweiler, M. Meli; Zürich University of Applied Sciences, ZHAW-InES
Presented at European ZigBee Developer’s Conference, Munich November 2014. WEKA Fachmedien

Frame
size

(Bytes)

Number of
Radios on

Sniffer

Mean Process
time

Time between
frame end
interrupts

5 1 26.8 µs 393 µs
127 1 222.5 µs 4.28 ms

5 2 34 µs 393 µs
127 2 232.4 µs 4.28 ms

TABLE V.
In both cases, the sniffer has no problem to receive the next

incoming packet. It is possible to add more radios to the system
without having troubles reading the packet and storing it in the
Data Buffer.

Sending data to the host for display could also be a
bottleneck. The data sender is connected to the TCP Slice of
the XMOS processor. As soon as a radio delivers a packet in
the Data Buffer, it will take the data and send it to the server. In
case of heavy wireless traffic, problems can occur if the server
is slow answering the request (> 1 ms). Especially in the case
small payload (tested with 5 Bytes) the data buffer will
overflow. This problem was solved by collecting the data and
sending bigger packets of up to 1024 Bytes together to the
server.

I. Sniffer performance: Time difference between different
probes.
A frame received by different sniffers should theoretically

show the same timestamp. However, due to the jitter of the
DCF synchronization and the delay at time stamping, there is a
difference. In order to verify this, 4 sniffers were placed in 4
different rooms (Fig. 10). After all of the 4 sniffers received a
valid DCF77 time, some traffic between the nodes in room0
and room1 was recorded. All of the 4 sniffers received the sent
packet. According to the timestamp, the frame was first
received by sniffer3, then sniffer2. The displayed order relates
to the way data were processed by the TCP part and piped to
Wireshark. The last sniffer that received the package was
sniffer1. The maximum difference between all the generated
timestamps for this frame amounts to 2.532ms. This difference
can be as high as 10ms as mentioned earlier in this document.
It is mostly caused by the jitter in the DCF77 modules.

Timestamp [s] Delta last [ms] Frame
number

Sniffer
identity

433.082443 … 0 X
459.981012 26’898.569 1 2
459.979224 -01.788 1 3
459.981720 02.496 1 0
459.981756 00.036 1 1
460.017856 36.100 2 Y

Min. timestamp 459.979224 s
Max. timestamp 459.981756 s
Delta for frame 1 2.532 ms
Delays between sniffers

J. Diversity
Since the sniffers can all accommodate several monitoring

probes, it is possible to monitor one RF band on several probes
of the same sniffer. If the distance between the antennas of the

probes is properly chosen, it is possible to see frames that could
otherwise not be seen by one probe because of multipath RF
effects.

 In an example (Table VI), both radios of Sniffer0 are set
to the same channel. One node sends a COAP request. The
other node responds with an acknowledgment that is only
received correctly on one radio. Together with the time
information the packet can be still identified. The energy level
also shows that the signal of the Node in Room1 is very weak
(data from Node1 to Node0).

K. Using one sniffer to monitor several channels
The different probes that are on one sniffer can also be

used to monitor a network working on different channels or
networks active on different channels.

In an example (Table VII), channel 25 has ZigBee traffic
while channel 26 is used by a 6LoWPAN device sending a
COAP information. Data from both networks are seen on the
monitoring PC.

Delta
time

Src. Dest. Info Ch ED

0.208902 0.0001 Broadcast ZigBee
Command

25 48

0.050025 0.0003 Broadcast ZigBee
Command

25 12

0.944524 bbbb::
20c:29..

1111::
e2c9..

Coap,
Confirmable

26 31

TABLE II.

L. Monitoring a large area with several sniffers
Table VIII shows measurement data recorded with 4

sniffers. In the upper half of the table, there is a request that is
send from a node in room0 to a node in room 1. This request is
seen three times, namely by every sniffer that is in the vicinity.
The energy detection (ED) value is much higher for the sniffer
in the room where the sending node was placed.

In the lower half of the table, one can see the answer of the
receiving node. The answer was also seen by the sniffer in its
room and the sniffers in neighbour rooms. Here also, it is
logical that the sniffer in the same room records the highest
ED value.

This measurement shows not only the traffic between the
nodes, but also where they could be placed. If a mesh network
is operating, it is possible to find a bottle neck in the network
and of course it is possible to sniff the whole range of the
mesh network because an arbitrary number of sniffers could
be placed where needed.

Delta time Src. Dest. Size Info ED FCS
0.1106300 Node0 Node1 94 Get 33 True
-0.000001 Node0 Node1 94 Get 38 True
0.055322 Node1 Node0 121 Ack 0 True
0.000002 Node1 Node0 126 data 0 False

TABLE I.

 P 8/12

D. Duendar, L. Hegetschweiler, M. Meli; Zürich University of Applied Sciences, ZHAW-InES
Presented at European ZigBee Developer’s Conference, Munich November 2014. WEKA Fachmedien

Delta
time

Src. Dest size Info ED FCS

0.106108 Node0 Node1 94 Confirmable
Get

0 True

0.005096 Node0 Node1 94 Confirmable
Get

7 True

-0.003968 Node0 Node1 94 Confirmable
Get

31 True

0.051889 Node1 Node0 121 ACK, 2.05
Content

0 False

0.003451 Node1 Node0 121 ACK, 2.05
Content

0 True

0.003967 Node1 Node0 121 ACK, 2.05
Content

12 True

TABLE III.

VI. CONCLUSIONS AND FUTURE WORK
We have designed an architecture based on a parallel

processor that has the needed flexibility for implementing a
network of distributed sniffers. This architecture should allow
the reliable monitoring of wireless traffic in simple and
complex low power communication networks. The flexibility
of the system opens the door to easy addition of modules
suitable to different WPAN protocols. Likewise, different
timing systems can be used for synchronization in order to
match the requirements of the environment of use. The DCF77
system used here needs some optimization for a better time
synchronization (ideally under the microsecond).

Future work will focus on 2 aspects:

• We will first optimize the system that has been
built, such as to understand the best trade-offs for
a future version.

• We will then rebuild the architecture to take
advantage of the lessons learned.

ACKNOWLEDGMENTS
Thanks to XMOS for providing us with Slikekits for test.

Thanks to Mr. C. Schlittler for discussions on the XMOS.

We are thankful to SBT in Zug, CH for their help

We are thankful for the support of the CH Federation with CTI
grant KTI 14763.1 PFES-ES

 P 9/12

D. Duendar, L. Hegetschweiler, M. Meli; Zürich University of Applied Sciences, ZHAW-InES
Presented at European ZigBee Developer’s Conference, Munich November 2014. WEKA Fachmedien

Fig. 6. Data flow

TABLE IV. PACKET STRUCTURE TABLE

Frame with 5 bytes: 27 us

Frame with 127 bytes 222.5 us

Fig. 7. Timing for radio receiving of short or long frames.

Lenth Timestamp Data LQI Sniffer Nr Radio & Channel Nr ED and FCS
1 byte 8 bytes <128 bytes 1 byte 1 byte 1 byte 1 byte

Radio with local
buffer

Data Buffer 32k

Data Sender

TCP

frame start SPI read packet SPI read packet

frame start

 P 10/12

D. Duendar, L. Hegetschweiler, M. Meli; Zürich University of Applied Sciences, ZHAW-InES
Presented at European ZigBee Developer’s Conference, Munich November 2014. WEKA Fachmedien

Copy of a 5 bytes frame on both radios:
4.8 us

Copy of a 127 bytes frame on both radios:
12.95 us

Fig. 8. Timing performance with 2 radios

5 bytes + 13 bytes Overhead: 10.9 us

127 bytes + 13 bytes Overhead: 15.9 us

Fig. 9. Buffer timing performance

Copy in framebuffer

Get Timestamp

Copy in framebuffer

Get Timestamp
start next packet

 P 11/12

D. Duendar, L. Hegetschweiler, M. Meli; Zürich University of Applied Sciences, ZHAW-InES
Presented at European ZigBee Developer’s Conference, Munich November 2014. WEKA Fachmedien

Fig. 10. Test rooms and placement of sniffers and nodes

Fig. 11. Xmos slice kit

Room with
Sniffer 0

Room with
Sniffer 3

Room with
Sniffer 1

Room with
Sniffer 2

Legend:
 Room

Communicating node

 P 12/12

D. Duendar, L. Hegetschweiler, M. Meli; Zürich University of Applied Sciences, ZHAW-InES
Presented at European ZigBee Developer’s Conference, Munich November 2014. WEKA Fachmedien

REFERENCES

[1] 802.15.4 specifications
[2] AT86RF233Atmel radio: http://www.atmel.com/devices/at86rf233.aspx
[3] Atmel sniffer: http://www.atmel.com/tools/AVRRZ541AVRZ-

LINK2_4GHZPACKETSNIFFERKIT.aspx?tab=devices
[4] Microchip zena sniffer:

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?Part
NO=AC182015-1

[5] xmos firm. http://www.xmos.com/about
[6] Xmos board https://www.xmos.com/products/xkits/slicekit
[7] DCF77 receiver: http://de.wikipedia.org/wiki/DCF77
[8] Information about DCF77: http://tf.nist.gov/general/pdf/2429.pdf

(table2 says 30ms with signal propagation time)
[9] Christian Schlittler,6LoWPAN node based on the XMOS architecture,

Master thesis, ZHAW 2014
[10] Christian Schlittler, XMOS and 6LoWPAN, Semester project, ZHAW

2013
[11] SmartRF Protocol Packet Sniffer: http://www.ti.com/tool/packet-sniffer
[12] Peryton sniffer: http://www.perytons.com/
[13] Ramon Clematide, Markus Hutzler, Platform for multichannel wireless

network sniffer, PA 2008, ZHAW,
[14] Multi-Channel Packet-Analysis System Based on IEEE 802.15.4

Packet-Capturing Modules; Seongeun Yoo, International Journal of
Distributed Sensor Networks, Volume 2014, Article ID 216504

[15] A. Koubaa, S. Chaudhry, O. Gaddour et al., “Z-monitor:
monitoring and analyzing IEEE 802.15.4-based wireless sensor
networks,” in Proceedings of the 36th Annual IEEE Conference on
Local Computer Networks (LCN '11), pp. 939–947, October 2011.

[16] L. Choong, Multi-Channel IEEE 802.15.4 Packet Capture Using
Software Defined Radio, CLA Networked & Embedded Sensing
Laboratory, Los Angeles, Calif, USA, 2009.

[17] P. Ferrari, A. Flammini, D. Marioli, S. Rinaldi, and E. Sisinni,
“On the implementation and performance assessment of a
wirelessHART distributed packet analyzer,” IEEE Transactions
on Instrumentation and Measurement, vol. 59, no. 5, pp. 1342–1352,
2010.

[18] Frontline sniffers: www.fte.com/
[19] Elisys Ble sniffer: http://www.ellisys.com/products/bex400/index.php
[20] Remo Ritzmann, Master thesis on Ble sniffer, 2010, ZHAW
[21] Dominic Ast, Markus Hutzler, Scalable Multichannel Wireless Sniffer

ECC2012 :
http://www.embeddedcomputingconference.ch/pdf_2012/1C1_AstHutze
ler.pdf

[22] Lorenz Sulzberger, Multi channel sniffer for wireless PAN (based on
parallel processor), Bachelor thesis 2009, ZHAW

[23] DCF77 Timecode Receiver, Elektor january 2012, Steve Marchant

http://www.atmel.com/devices/at86rf233.aspx
http://www.atmel.com/tools/AVRRZ541AVRZ-LINK2_4GHZPACKETSNIFFERKIT.aspx?tab=devices
http://www.atmel.com/tools/AVRRZ541AVRZ-LINK2_4GHZPACKETSNIFFERKIT.aspx?tab=devices
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=AC182015-1
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=AC182015-1
http://www.xmos.com/about
https://www.xmos.com/products/xkits/slicekit
http://de.wikipedia.org/wiki/DCF77
http://tf.nist.gov/general/pdf/2429.pdf
http://www.ti.com/tool/packet-sniffer
http://www.perytons.com/
http://www.fte.com/
http://www.ellisys.com/products/bex400/index.php
http://www.embeddedcomputingconference.ch/pdf_2012/1C1_AstHutzeler.pdf
http://www.embeddedcomputingconference.ch/pdf_2012/1C1_AstHutzeler.pdf

	I. Introduction and motivation
	II. previous works
	III. requirements
	IV. general concept
	A. The XMOS processor board
	B. The XMOS processor
	C. Start-up
	D. Synchronisation
	E. Data structure

	V. Measurements and results
	A. General set up
	B. Single radio unloading performance.
	C. Single radio unloading multi-frame performance.
	D. Multi-radio configuration.
	E. Time delay in time stamping for multi-radio configuration.
	F. Multi-radio configuration performance
	G. Multi-radio configuration: TCP Buffer performance
	H. Sniffer total time performance
	I. Sniffer performance: Time difference between different probes.
	J. Diversity
	K. Using one sniffer to monitor several channels
	L. Monitoring a large area with several sniffers

	VI. Conclusions and future work
	Acknowledgments
	References

