
Using IEEE 802.15.4 / ZigBee in audio applications

Authors:
Marcel Meli, PhD
Lecturer, Head of Wireless Group, University of Applied Sciences, ZHW (InES),
Technikumstrasse 9, CH-8400, Switzerland Marcel.Meli@zhwin.ch

Martin Gysel, Dipl. El. Ing. FH
Research Assistant, Wireless Group, University of Applied Sciences, ZHW (InES),
Technikumstrasse 9, CH-8400, Switzerland Martin.Gysel@zhwin.ch

Marc Sommerhalder, Dipl. El. Ing. FH
Büssingerstrasse 10, CH-8203 Schaffhausen, Switzerland
Marc.Sommerhalder@gmx.net

Abstract
Most of the current uses for ZigBee and IEEE 802.15.4 focus on control applications.
However, there are other areas that will benefit from the standardisation, low cost and
possibly low power of ZigBee/IEEE 802.15.4. This paper focuses on the use of ZigBee/IEEE
802.15.4 for audio applications. We will discuss the advantages and theoretical limits of
ZigBee/IEEE 802.15.4 for this kind of applications. We will then present a design that we
used as starting point to develop applications related to the transfer of audio data.

1. IEEE 802.15.4 / ZigBee
ZigBee and the underlying layers have been designed for low data rate applications, where
low power consumption is of great importance. These standards have been described in
detail in several documents, and the specifications are also available from the ZigBee and
the IEEE organisations [5,7,14].
Some of the features are:

- 27 channels (1 channel of 20 Kbps in the 868 MHz band, 10 channels of 40 Kbps in
the 915 MHz band, 16 channels of 250 Kbps in the 2.4 GHz band)

- DSSS modulation, CSMA-CA access.
- Low power modes and low stack complexity, making it suitable for implementation on

low power and low cost microcontrollers
- Support for several network topologies with the possibility of connecting thousands of

devices together.
- Fast connection time and support for Guaranteed Time Slots (GTS)

2. Audio needs
ZigBee and the underlying protocol IEEE 802.15.4 were developed with low data rate in
mind. Low energy consumption is mostly noticed for applications where data rate is low, and
devices can often go in power down mode. Why should these standards be at all considered
for audio applications? Especially when standards such as Bluetooth and many proprietary
solutions already cater for such needs?
There are several arguments that speak in favour of a ZigBee approach, at least for a certain
category of audio applications:

- The data rate requirements needed for audio greatly varies with the application, and
will range between tens of Kbps (low quality speech) and hundreds of Kbps (very
good music quality), making ZigBee an alternative to consider for low-end / mid-end
applications.

- Compression methods that are currently been used in the telephone (speech) or
music industries could be applied to reduce the data rate. This will of course require
the use of appropriate processing power for compression/decompression algorithms.
Many algorithms with various degrees of complexity are available, with bit rate been

University of Applied Sciences, ZHW-InES, Winterthur

Embedded World Conference 2006, WEKA Fachmedien 1/10

reduced in certain cases down to a few Kbit/s. Some applications already integrate
the necessary computing power, or even the necessary compression algorithms.

- ZigBee / IEEE 802.15.4 modems have a low complexity, making it easier for the
application engineers to integrate them in a solution.

- The potential low cost of ZigBee / IEEE 802.15.4 modems makes it likely that they will
be deployed in large quantities, and the number of applications using this standard
will increase. As this number grows, it is inevitable that for applications that already
integrate a ZigBee modem and where audio communication is needed, one will
consider the possibility of using that modem for audio.

- The network capacities of ZigBee are worth considering for low-end audio
applications that need to cover a small area, and should have the flexibility and ease
of deployment provided by a wireless system. The routing capabilities of ZigBee can
be used in a similar way to VoIP systems.

3. Audio compression
Speech compression methods can basically be classified into 3 categories:
Waveform Codecs, source Codecs and hybrid Codecs
a) Waveform Codecs
These Codecs require a higher sampling rate, but are less complex. They can be classified
in time-related Codecs (for example PCM, ADPCM) and frequency-related Codecs (for
example SBC, ATC).

PCM –Codecs using lawAorlaw −−µ will delivers 64 Kbit/s. This rate can be further

reduced down to 16Kbit/s with the implementation of ADPCM. Speech orientated SBC
Codecs typically deliver data rates between 16 Kbit/s and 35 Kbit/s.
b) Source Codecs
They work by modelling the speech source. Instead of audio data, parameters related to this
model are transmitted. Some Vocoders work with data rates as low as 2 Kbit/s, and are used
in applications where voice quality is not important.
c) Hybrid Codecs
They are a compromise between the 2 other categories. They deliver lower data rate than
waveform Codecs, but a better quality than source Codecs. Typical examples are CELP-
Codecs such as Speex (2 to 44 Kbit/s for an acceptable quality, but requires much
computing power), RPE-Codecs such as GSM.
Many Codecs are also available for music.

Table 1 Some speech codecs

Speech
Codecs

Algorithm Data
rate
(Kbit/s)

Sampling
rate
(Kbit/s)

Sample
size
(bit)

Comments Ref.

Waveform Codecs

G.711 PCM 64 8 13/14 Telephony.

lawAorlaw −−µ used to

compress the sample size
down to 8 bits.

[13]

G.721 ADPCM 32 8 13 / 14 CCITT [13]

G.723 ADPCM 24 / 40 8 13 / 14 CCITT [13]

G.726 ADPCM 16 / 24
/ 32 /
40

8 13 / 14 CCITT
Includes G.721 and G.723,
and can deliver 16 Kbit/s

[13]

G.727 ADPCM 16 / 24
/ 32 /
40

8 13 / 14 CCITT. Similar to G.726
For packet-based systems.

[13]

DVI ADPCM 24 / 32 8 16 From Interactive Multimedia
Association. Less complex

[9]

University of Applied Sciences, ZHW-InES, Winterthur

Embedded World Conference 2006, WEKA Fachmedien 2/10

than the ITU-T ADPCM
Codecs. Can be implemented
on a 8-Bit microcontroller
without FPU.

G.722 SBC 64 16 14 Based on an SB-ADPCM
algorithm. The Signal is
divided into 2 bands.

[2]

Hybrid Codecs

G.723.1 ACELP /
MP-MLQ

5.6 /
6.3

8 16 VoIP. [13]

G.728 CELP 16 8 8 Processing intensive. [13]

G.729 CS-
ACELP

8 /6.4 /
11.8

8 16 VoIP. The variant G.729A is
compatible and less complex,
at the expense of quality.

[13]

Speex CELP 2 – 44 8 / 16 /
32

8 / 16 VoIP. An implementation
exists for the DSPIC from
Microchip, and can be used
at low cost.

[23]

GSM
06.10

RPE-LTP 13 8 16 Less complex than CELP
Codecs. Used in GSM.

[6]

iLBC LPC 13.3 /
15.2

8 16 VoIP. Appropriate for systems
with packet loss. As complex
as G.729A, but better quality.

[8]

AMR ACELP 4.75 –
12.2

8 / 16 13 Developed for 3GPP (3rd
Generation Partnership
Project).

[1]

IMBE MBE 2.4 –
9.6

Less complex than CELP
based Codecs.

[4]

AMBE MBE 2.0 –
9.6

Less complex than CELP
based Codecs.

[4]

Table 2 Some Codecs used in music

Music
Codecs

Data rate
(Kbit/s)

Sampling
rate
(Kbit/s)

Comments Ref

ATRAG 48 – 292 48 / 44.1 Developed by Sony for the minidisk. Claims
for the new version ATRAC3plus, to deliver
with 64Kbit/s, the same quality as MP3 at 128
Kbit/s.

[12]

MPEG1
audio layer-2

8 – 448 16 - 48 MP2 is a SBC using 32 sub-bands.
Implements a psychoacoustic model.

[10]

MPEG1
audio layer-3

32 – 320
/ variable

32 - 48 MP3 also uses a psychoacoustic model. [10]

AAC variable 8 - 96 Defined in MPEG-2. Uses several
compression methods that can be defined in
a profile. With 96Kbit/s, it delivers about the
same quality as MP3 at 128 Kbit/s

[10]

Musepack 3 – 1300 32 - 48 Based on MP2-Codec, but implements some
other techniques.

[19]

Vorbis 16 – 500 8 - 192 Patent free. Quality is better than that of MP3
for the same bit rate, at the expense of more
complexity.

[20]

Bluetooth
SBC

variable 16 - 48 Used as standard in Bluetooth. Works with 4
or 8 sub-bands. Complexity is low.

[2]

University of Applied Sciences, ZHW-InES, Winterthur

Embedded World Conference 2006, WEKA Fachmedien 3/10

4. Theoretical transfer limits
We will now have a look at the data rates that are possible with ZigBee / IEEE 802.15.4. We
consider only the 2.4 GHz band.
The bit rate of 250 Kbit/s per channel can not be fully used for the payload (audio data).
There is an overhead related to the way that the communication works.
Several mechanisms should be taken into account when estimating the effective
transmission rate. ZigBee has a layer structure, and each layer adds additional header
information, so that the payload at the end is less that the amount of information that is sent.
The total amount of extra bytes depends on the layer from which the application runs, and on
the operating mode of the communication system.

Working from the highest (ZigBee MSG) level, the maximum number of relevant bytes that
can be packed in a frame is: imax = 127- (19 + hAPS_Addr + hMAC_Addr + hMAC_PAN)
With headers of at least: 2 bytes for the AF frame, (4 + hAPS_Addr) bytes for the APS frame, 8
bytes for the NWK frame, (5 + hMAC_Addr + hMAC_PAN) bytes for the MAC frame.
hAPS_Addr is 2 for direct addressing, and 1 for indirect addressing.
hMAC_Addr is 16 for long addresses, and 4 for short addresses.
hAPS_Addr is 4 for inter-PAN transfers, and 0 for intra-PAN transfers.
There are also 6 bytes for the PHY frame that contribute to the communication.

Considering directly
addressed intra-PAN transfer
with short addresses and
ignoring the delays due to the
communication mechanisms,
the maximum payload data
rate is: 191Kbit/s starting
from the AF frame, and 218
Kbit/s starting from the MAC
frame.
The delays actually reduce
the theoretical payload data
rate. We deal here with the
simple case of a Single
Sender, and intra-PAN
transfers with short address.
Further loss of effective
bandwidth is related to
mechanisms necessary for
Collision Avoidance (CA),
Interframe spacing (IFS), the
extra header of the GTS
Frame when this mode is
used.

Non beacon frames: (Fig. 10). Collision avoidance requires that a clear channel assessment
(CCA) be performed before transmitting data. During this time, the channel is checked to
insure that it is free. If the channel is not free, the transmitter should wait for a random time
(random number of backoffs) before retrying. This random number is controlled by a variable
BE, according to the function rand (2BE – 1).
interframe spacing depends on the length of the message transmitted. For messages with
the MPDU less or equal to 18 bytes, a short interframe spacing (SIFS) (tSIFS of at least 192
us) is used. Otherwise, a LIFS (tLIFS at least 640 us) is used.

Fig. 1 Layer structure

University of Applied Sciences, ZHW-InES, Winterthur

Embedded World Conference 2006, WEKA Fachmedien 4/10

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

Transmission rate Non−Beacon Enabled, Single Sender without APS−Ack

i in Byte

R
 i
n

 k
B

it
/s

no CA/ACK

only CA

only ACK

CA/ACK

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Transmission rate Non−Beacon Enabled, Single Sender with APS−Ack

i in Byte

R
 i
n
 k

B
it
/s

no CA/ACK

only CA

only ACK

CA/ACK

10 20 30 40 50 60 70 80 90 100 110
0

20

40

60

80

100

120

140

160

180

Transmission rate Non−Beacon Enabled, Single Sender, IEE802.15.4 only

i in Byte

R
 i
n

 k
B

it
/s

no CA/ACK

only CA

only ACK

CA/ACK

Two acknowledge signals (validation of received messages) can be used by ZigBee: One at
MAC level and another at APS level. They will occupy the transmission channel, and
therefore contribute to the total overhead. Collision avoidance and interframe spacing are
not used for MAC acknowledge frames. ZigBee can use a second acknowledge signal at
APS level. The use of acknowledge signals can be turned off (which will be meaningful in
most audio applications).
A MAC acknowledge will require about tMAC_ACK . If it is enables, the transmitter will wait at the
most twait for the MAC acknowledge after every transmission.
An APS acknowledge is a normal data frame (from APS layer) lasts tAPS_ACK and requires a
LIFS
The total time required for a message with a payload of i bytes, starting from the AF layer
and considering that both MAC and APS acknowledge are disabled is:
tp + tIFS + tCA + tCCA = TB (8(h + i) + 4IFS(h,i) + 80 rand(2BE – 1) + 80)
TB is a bit period (4 microseconds) h is the total of header bytes needed until MAC layer, i is
the payload at AF level , BE is 3 for CA enabled, and 0 if CA is disabled.
IFS(h,i) is 12 if h+i smaller or equal to 18, otherwise 40.
The function y= rand(x) gives a random value 0<= y <=x
A MAC acknowledge will add the extra time of: twait = 216TB
The extra time for APS is: tAPS_ACK = TB (8h + 80 rand(2BE – 1) + 224 [+216]MAC_ACK)

The Data rate in Kbytes per second in
function of the payload i is:

mihIFShpi

i
RDataRate B

+++
=

),(.5.0.

h = 24 [+1] direct_adr [+2] inter_PAN

If APS acknowledge used:
m = 10 [+35]CA [+27] MAC_ACK
p = 1
If APS acknowledge not used:
m = 38 [+70]CA [+54]MAC_ACK

p = 2

These calculations will results in the curves
shown above (Fig. 2, 3, 4), in the case of
CA enabled, an average value is taken.
Beacon frames (Fig. 8, 9)
Similar computations can be made for
Beacon modes (transfer with GTS or without GTS).

Fig. 2 Fig. 3

Fig. 4

University of Applied Sciences, ZHW-InES, Winterthur

Embedded World Conference 2006, WEKA Fachmedien 5/10

0

5

10

102030405060708090100

0

20

40

60

80

100

120

140

160

n

Bitrate values vs. packet length for n timeslots, SO=BO=1

i in Byte

R
 i
n

 k
B

it
/s

0

5

10

15

102030405060708090100

0

20

40

60

80

100

120

140

160

q

Bitrate values vs. packet length for q timeslots, SO=BO=1

i in Byte

R
 i
n

 k
B

it
/s

One should bear in mind that CSMA is not needed with GTS
- A maximum of 7 GTS are allowed
- The communication within a GTS must end 1 interframe spacing before the actual

GTS is ended
- The minimal length of the CAP in normal cases should not be less than 440 symbol

periods (that is 1760 TB)
The data rate is:

ACKMAC

SO

BOB
ihIFShi

n
floor

i
RDataRate

_]27[6),(.5.0

2.30

2.480 ++++
=

 n is the number of basic slots that are used
BO is the MAC Beacon Order and SO is the MAC Superframe Order. Resulting curves for
GTS transfer (Fig. 5) and non-GTS transfer (Fig. 6) are shown below.

5. Limits related to the processing power of sender and receiver
The transmission channel is not the only factor that will influence the final quality of the audio
stream. The data also needs to be processed fast enough, otherwise there will be lost of
data, or the transmission rate will have to be reduced. Since the data rate is already low
enough, it will be better if the processing power of the sending and receiving stations does
not constitute a bottleneck.
Both sender and receiver are usually controlled by a microcontroller. Typically, that
processor will be used on the receiving end side for the following operations:

- Unloading the data received from the transceiver’s memory into the microcontroller’s
memory

- Checking that the data received is error-free
- Processing the data (including decompression when needed)
- Sending the sample to the hardware the Codec, at the needed sampling rate.

 Similar operations are needed on the transmitting side.
In both cases, the processing time will increase if a stack is implemented on top of the MAC
layer (case of ZigBee). The use of DMA will allow some work to be done in parallel and
reduce the load on the microcontroller.
The processing time can roughly be divided into 2 parts:

- A part that depends on the number of bytes sent/received. (This includes the transfer
time between the transceiver’s memory and the controller’s memory, compression
and decompression time)

- A part that is independent of the number of bytes that are processed.

Fig. 5 Fig. 6

University of Applied Sciences, ZHW-InES, Winterthur

Embedded World Conference 2006, WEKA Fachmedien 6/10

The effect of the processing power can be approximated to a linear function. We can
conclude that a faster processor and low software requirements will be better.

6. Limits related to delays and lost of packets
So far, we have assumed that the transmission occurred without errors. In practice, there are
interferences that will affect the channels with more or less severity. Compressing and
transmitting the data in packets also means that there will be delays. The severity of these
elements depends on the application. Everything else been equal, we can basically say that
the longer a data packet is, and the higher the delays and the probability that it will be
disturbed. The effect of disturbances resulting in loss of data is more severe when the
packets are larger. This means that errors occurring while transmitting larger blocks will tend
to have more audible effects. This will introduce a packet length dependent limit for larger
blocks of data.
In the case of speech applications, missing samples in the range of 10-20 ms will hardly be
noticed. For real time speech application, delays should be kept below 200 ms.
Table 3 shows for ADPCM the resulting delays (sampling time + transmission time) for 2
different packet lengths. The overhead in transmission is not considered.

Table 3 Delays resulting from sampling and transmitting

Coding Sampling
rate (KHz)

Bit per
sample

Bit rate
(Kbit/s)

Samples
per packet

Sampling time
per packet

Delay (ms)

Packet length = 102 bytes, transmission time of payload = 4.26 ms (2.4 GHz band)

Comp. PCM 8 8 64 102 12.8 17

ADPCM 8 5 40 163 20.4 24.7

ADPCM 8 4 32 204 25.5 29.8

Packet length = 50 bytes, transmission time of payload = 4.26 ms (2.4 GHz band)

PCM 8 8 64 102 6.25 8.84

ADPCM 8 5 40 163 10 12.6

ADPCM 8 4 32 204 12.5 15.1

It can be seen that for coding schemes with low bit rate, the delays are higher. The effects of
packet loss will also be more important.
The delays will have to be corrected with the overhead related to the communication mode.

7. A set up for audio transfer
A flexible system allowing the connection of various ZigBee/IEEE 802.15.4 modems was
built (Fig. 7)

Fig. 7 Block diagram of the hardware

Central to this set up is the DSP + Microcontroller. The 16-bit DSPIC has a processing power
of 30 mips , is capable of executing some DSP algorithms [16], and can therefore be used to
try some of the compression or decompression algorithms. It also implements a low end
ADC / PWM combination that could be used for low quality audio.

University of Applied Sciences, ZHW-InES, Winterthur

Embedded World Conference 2006, WEKA Fachmedien 7/10

The DSPIC is also rich in serial interfaces such as SPI, UART. It is therefore possible to
implement several interfaces, in order to connect to various ZigBee / IEEE 802.15.4
modems. This makes it possible to evaluate different components.
On the software side, Microchip give access to the source code of its ZigBee stack as long
as it is used on one of its processors [11,18]. This stack could be ported to the DSPIC if
needed. A library including an implementation of the Speex Codec is also available for a low
fee [17].
The Codec (XE3006) [22]. The very low power hardware Codec from Semtech (previously
Xemics) is used for sampling the audio signal, and converting the samples back into analog
audio. It can connect to the DSPIC using a fast serial bus.
For experiments with MP3, we included the VS1002, a device from VLSI [21]. It performs
decoding of MP3 samples that would be sent from another platform.
Various modems can be connected to the system: the following were used:

- The ZigBee Kit from Microchip (PICDEMZ). This modem consists of a PIC18LF4620
microcontroller from microchip, running a ZigBee stack provided by the same firm,
and a CC2420 transceiver from Chipcon [3].

- A module based on the Jennic JN5121 single chip ZigBee / IEEE 802.15.4 device
[15]. The Jennic chip includes both a microcontroller and a transceiver. The 32-Bit
processor clocked at 16 MHz runs the necessary stack, and also provides enough
computing power or the application.

8. Results and conclusions
A version of the ADPCM algorithm was implemented and run on the DSPIC. A network
consisting of a coordinator and a device was set up, and audio data from various sources
were successfully streamed in half-duplex mode (mainly speech quality).
Using the PICDEMZ module (at ZigBee stack level), it was possible to stream audio samples
in half duplex mode. Due to the computing limitations of the PICDEMZ processor, it was not
possible to stream at more than half of the theoretical limit.
Measurements showed that packets were effectively being sent fast enough, implying that
the low effective data rate achieved was related to the computing power limits and the
demands of the stack. The RS232 serial link between the modem and the DSPIC were also
found to be a weak link, requiring too many interrupts.
Using the Jennic modem for sending data at MAC level (network with 1 sender and 1
receiver), it was possible to approach the calculated theoretical limits of data rates, with more
than 75% of the computing power remaining available for other purposes.
This shows that Zigbee/ could well be used for audio applications. A simple compression
algorithm will help to reduce the data rate, and improve the system. The available bandwidth
is sufficient for low-end applications. With proper compression, one could even reach better
quality. It is however important to have enough computing power to ensure that the
bottleneck is not on the stack (computing power) side, and that the communication channel is
used efficiently. The low power advantages provided by ZigBee should not be at the forefront
of the application, since the communication devices will frequently be active.
Important improvements can be obtained by working at the MAC level, since more bandwidth
will be available. The extra computing power resulting from not using the ZigBee layers could
be used to implement a simple compression algorithm for single-chip solutions like the
Jennic device. This will reduce costs and size, and contribute to keeping the overall power
consumption down.
Various modes can also be taken advantage of, in order to further reduce the overheads.
However, these have to be tailored to the application.
Simple applications involving only 2 stations are obviously easier to implement. For
applications with many stations, the computing power of a DSP is needed in order to reduce
the bit rate to acceptable levels, and one should consider GTS modes.

University of Applied Sciences, ZHW-InES, Winterthur

Embedded World Conference 2006, WEKA Fachmedien 8/10

Acknowledgement
We wish to thank the firms Jennic and Municon for their kind support in providing modules for
tests.

CAP CFP

t SD

t BI

t S

0 1 3 4 5 6 7 8 9 10 11 12 132 14 15

 IFS

Beacon
t CAP

t BP

IFS

CCA CCA

CA

t IFSt CCA

Header- & Infobytes

t CA

t transmission

t data

t beacon

CAP CFP

t SD

t BI

t S

0 1 3 4 5 6 7 8 9 10 11 12 132 14 15

Packet n

IFS

t P t IFS

(a1)

Packet n

IFS

t P t IFS

Ack

(b1)

t At Ack

MAC-Ack

 Header- & Infobytes (ht +i)

GTS

Packet n

IFS

t P t IFS

 Header- & Infobytes (ht +i)

t GTS

Fig. 8 Time diagram
for beacon enabled

CAP transfers

Fig. 9 Time diagram
for beacon enabled

GTS transfers

University of Applied Sciences, ZHW-InES, Winterthur

Embedded World Conference 2006, WEKA Fachmedien 9/10

Packet n

IFS CCACA

t P t IFS t CCA

(a)

Packet n

IFS CCACA

t P t IFS t CCA

Ack

(b)

Packet n+1

Packet n+1

t At Ack

MAC-Ack

 Header- & Infobytes (ht +i)

 Header- & Infobytes (ht +i)

t CA

t CA

References
[1] 3rd Generation Partnership Project. 3GPP Specification series.
http://www.3gpp.org/ftp/Specs/html-info/26-series.htm, September 2005.
[2] Bluetooth Audio Video Working Group. ADVANCED AUDIO DISTRIBUTION PROFILE
SPECIFICATION. http://www.bluetooth.org, September 2005.
[3] Chipcon. CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver, June 2004.
[4] Digital Voice Systems. DVSI Home Page. http://www.dvsinc.com/, September 2005.
[5] ZigBee Alliance. ZigBee Specification, June 2005. www.zigbee.org
[6] ETSI. Digital cellular telecommunications system (Phase 2+); Full rate speech;
Transcoding. http://www.etsi.org, September 2005.
[7] IEEE. Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), October 2003.
[8] iLBCfreeware.org Project. internet Low Bitrate Codec.
http://www.ilbcfreeware.org/, September 2005.
[9] IMA Digital Audio Focus and Technical Working Gropus. Recommended Practices for
Enhancing Digital Audio Compatibility in Multimedia Systems.
http://www.cs.columbia.edu/~hgs/audio/dvi/, October 1992.
[10] Moving Picture Experts Group. MPEG standards.
http://www.chiariglione.org/mpeg/standards.htm, September 2005.
[11] Nilesh Rajbharti. Microchip Stack for the ZigBee Protocol, AN965. Microchip, 2004.
[12] Sony Global. ATRAC3 Technology.
http://www.sony.net/Products/ATRAC3/tech/atrac3/index.html, September 2005.
[13] ITU-T. G.x Recommendation.
http://www.itu.int/rec/recommendation.asp?type=products&lang=e&parent=T-REC-G,
September 2005.
[14] Zigbee alliance, white papers, slide presentations (www.zigbee.org)
[15] Jennic. JN5121 IEEE802.15.4 Wireless Microcontroller, 2005. (www.jennic.com)
[16] Microchip. dsPIC30F Family Reference Manual, 2004.
[17] Microchip. dsPIC30F Speech Encoding/Decoding Library User’s Guide. Technical
report, Microchip, 2005. (www.microchip.com)
[18] Microchip. Microchip Stack for the ZigBee., V1.0-3.3, September 2005.
[19] the musepack project. Musepack. http://www.musepack.net, September 2005.
[20] the xiph open source community. Vorbis. http://www.vorbis.com/, September 2005.
[21] VLSI. VS1002d - MP3 AUDIO CODEC, April 2005.
[22] Xemics. XE3005/XE3006 Low-Power Audio CODEC, 2005.
[23] Xiph.Org Foundation. Speex. http://www.speex.org/, September 2005.

Fig. 10 Time diagram
for non beacon mode

transfers

University of Applied Sciences, ZHW-InES, Winterthur

Embedded World Conference 2006, WEKA Fachmedien 10/10

