
Applied	 Data	 Science:	 Using	 Machine	 Learning	 for	 Alarm	
Verification	
	
by	Jan	Stampfli	and	Kurt	Stockinger	
Zurich	University	of	Applied	Sciences,	Switzerland	
	
Introduction	
	
False	alarms	triggered	by	sensors	of	alarm	systems	are	a	significant	cost	driver	
for	 the	 blue	 organizations	 (i.e.	 police,	 firefighters,	 ambulance)	 and	 owners	 of	
alarm	 systems.	 They	 occur	 in	 a	 large	 number	 and	 are	 very	 costly.	 These	 false	
alarms	are	often	due	to	either	technical	failures	such	as	network	downtimes	or	
human	errors.		
	
To	 remedy	 this	 problem,	 we	 develop	 a	 novel	 alarm	 verification	 service	 by	
leveraging	the	power	of	an	alarm	data	warehouse.	In	addition,	we	apply	various	
machine	learning	algorithms	to	identify	false	alarms.	The	goal	of	our	system	is	to	
help	 human	 responders	 in	 their	 decision	 about	 triggering	 costly	 intervention	
forces	or	not.	
	
Approach	
	
In	this	project	we	are	working	with	a	security	company	that	is	a	mayor	player	in	
secure	alarm	transmission.	Alarms	can	be	triggered	by	devices	installed	at	banks,	
jewelry	 stores,	 private	 homes,	 etc.	 As	 already	 stated	 initially,	 around	 90%	 of	
alarms	are	so-called	false	alarms	and	are	due	to	technical	reasons	or	unwanted	
human	error.	The	challenge	of	our	project	is	to	significantly	reduce	the	amount	
of	false	alarms.	
	
The	 problem	 of	 alarm	 prediction	 is	 conceptually	 similar	 to	 anomaly	 detection	
(Chandola	et	al.	2009)	or	prediction	of	 failures	(Salfner	et	al.	2010).	Hence,	we	
can	 borrow	 some	 ideas	 from	 these	 fields	 and	 take	 advantage	 of	 the	 latest	
progress	in	Deep	Learning	(LeCun	et	al.	2015).	In	our	project	we	have	chosen	the	
following	four	machine	learning	approaches	to	predict	false	alarms:	

• Random	Forests	
• Support	Vector	Machines	
• Logistic	Regression	
• Deep	Neural	Networks	

	
We	based	our	experiments	on	a	set	of	more	than	300,000	alarms.	For	each	alarm	
we	 had	 multiple	 different	 features	 such	 as	 device	 ID,	 device	 location,	 type	 of	
alarm,	alarm	trigger	time,	etc.	We	used	these	features	as	 input	for	our	machine	
learning	approaches.	An	overview	of	the	system	architecture	is	given	in	Figure	1.	



Project	SAVE

Data-Warehouse
Predicted	

Alarm	Stream
(True/False)

Machine	Learning

Random	Forest

Support	Vector	Machine

Logistic	Regression

Deep	Neural	Network

Alarm	Stream

	
Figure	1.	Overview	of	our	alarm	prediction	system:	alarm	streams	are	stored	 in	a	data-warehouse	
and	each	alarm	is	evaluated	as	true	or	false.	

	
Due	 to	 security	 reasons	 we	 do	 not	 have	 direct	 information	 about	 whether	 an	
alarm	is	a	false	alarm	or	not.	However,	we	have	indirect	information	that	we	can	
use	as	labels	for	our	machine	learning	approach.	In	particular,	for	each	alarm	we	
know	when	it	was	triggered	and	when	it	was	reset	again.	Our	hypothesis	is,	that	
if	the	time	difference	delta	t	between	triggering	and	resetting	an	alarm	is	small,	
there	is	a	high	chance	that	the	alarm	is	false.		
	
Consider	 the	 case	 of	 an	 alarm	 system	 deployed	 at	 a	 private	 home.	 Further	
assume	 that	 kids	 or	 a	 pet	 triggered	 an	 alarm.	 In	 this	 case,	 the	 parents	 or	 pet	
masters	 might	 call	 the	 alarm	 receiving	 center	 and	 inform	 them	 about	 a	 false	
alarm.	 In	 any	 case,	 the	 alarm	 receiving	 center	 will	 reset	 the	 alarm	 after	
verification	of	 the	alarm	system	responsible	or	 the	 caller	 identity.	 In	 that	 case,	
the	delta	t,	i.e.	the	time	between	triggering	an	alarm	and	resetting	it	is	very	small.	
	
In	summary,	the	goal	of	our	machine	learning	approach	is	to	learn	whether	the	
delta	t	is	below	or	above	a	certain	threshold	value.		
	
Details	about	the	Experiments	
	
For	our	experiments	we	used	Apache	Kafka	and	Apache	Spark.	Kafka	delivers	the	
alarm	 streams	 in	 real	 time	 while	 Spark	 is	 used	 for	 real-time	 processing	 and	
machine	learning.	
	
Our	 machine	 learning	 task	 was	 to	 classify	 alarms	 with	 two	 possible	 classes	
“positive”	 and	 “negative”	 (i.e.	 negative	 if	 the	 alarm	 occurred	 by	 mistake	 and	
positive	 otherwise).	 To	 solve	 our	 task	 we	 had	 more	 than	 300,000	 alarms	
containing	 around	 25	 different	 features.	 Moreover,	 we	 engineered	 additional	
features	 based	 on	 the	 given	 data.	 From	 the	 alarm	 event	 time,	 for	 example,	we	
retrieved	the	day	of	the	week	and	the	hour	of	the	day	an	alarm	occurred.	
	
Besides	 the	 event	 time,	 all	 our	 features	 are	 categorical	 and	 without	 a	 natural	
order	(like	locations).	With	these	kinds	of	features	the	simplest	modeling	choice	
is	to	use	Random	Forests	because	no	encoding	of	categorical	features	is	required.	
In	 order	 to	 apply	 additional	 machine	 learning	 algorithms,	 we	 chose	 one-hot	



encoding	(also	known	as	one-of-K	encoding).	With	this	encoding	a	feature	results	
in	a	binary	vector	with	 the	 length	equal	 to	 the	number	of	different	values	with	
only	 a	 single	 bit	 set	 to	 one.	 The	 advantage	 of	 this	 encoding	 is	 that	 it	 does	
eliminate	 any	 unwanted	 order,	 meaning	 that	 the	 values	 are	 equitable	 to	 each	
other.	
	
In	addition	to	Random	Forests	we	chose	three	algorithms	that	are	often	used	for	
classification,	 namely	 Logistic	 Regression,	 Support	 Vector	 Machines	 and	 Deep	
Neural	Networks.		
	
To	train	our	algorithms	we	first	evaluated	the	given	features.	Therefore	we	used	
the	Pearson	correlation	to	find	dependencies	between	features	and	labels	as	well	
as	 between	 features	 to	 each	 other.	 In	 addition,	 we	 ran	 a	 grid	 search	 for	 each	
algorithm	varying	the	features	used	to	train	the	models	and	finally	selected	the	
most	promising	features	to	learn	our	classification	models.	
	
To	 train	 and	 evaluate	 our	 approach,	 we	 divided	 the	 alarms	 into	 two	 sets	 for	
training	 and	 testing,	 containing	 about	 170,000	 alarms	 each.	 Additionally,	 we	
excluded	 about	 10%	of	 the	 training	 set	 to	 use	 it	 as	 validation	 set	 for	 selecting	
hyper	parameters.	
	
Results	
	
In	 order	 to	 evaluate	 the	 effectiveness	 of	 our	 machine	 learning	 approach,	 we	
experimented	with	various	values	for	delta	t	ranging	between	1	and	10	minutes.	
The	goals	of	our	evaluation	were	as	follows:		

• Evaluate	the	accuracy	of	four	different	machine	learning	algorithms	
• Study	the	impact	of	various	deltas	t	on	the	prediction	accuracy	

	
The	 selection	 of	 hyper	 parameters	 for	 each	 of	 the	 learning	 algorithms	 (e.g.	
architecture	of	Neural	Networks)	was	essential	for	the	prediction	accuracy.	Even	
though,	once	we	 found	suitable	parameters	we	did	not	have	to	adjust	 them	for	
the	 different	 deltas	 t	 (e.g.	 neither	 under-	 nor	 overfitting),	 showing	 that	 the	
complexity	of	the	models	is	appropriate	for	our	task.	
	
Finding	 the	hyper	parameters	was	done	with	grid	 search.	The	 following	 tables	
show	the	best	suitable	parameters	found	for	our	classification	task.	
	
Random	Forest	
Maximum	depth	of	a	tree	 30	
Number	of	trees	to	train	 50	
	
Support	Vector	Machine	
Maximum	number	of	iterations	 2,000	
Step	size	 1.0	
Mini	batch	fraction	 0.2	
Regularization	parameter	 1e-2	
Kernel	 Linear	
Update	Function	 Squared	L2	



	
Logistic	Regression	
Maximum	number	of	iterations	 500	
Convergence	tolerance	of	iterations	 1e-6	
	
Deep	Neural	Network	
Maximum	number	of	epochs	 10,000	
Mini	batch	size	 200	
Loss	function	 Cross	Entropy	
Update	function	 Nesterov	Momentum	
Learning	rate	 0.1	
Momentum	 0.9	
	
Architecture	 (5	Layers)	
Layer	 #	Nodes	 Type	 Activation	Function	
Input	 803	Nodes	 	 	
Hidden	1	 803	Nodes	 Fully	connected	 ReLU	
Hidden	2	 16	Nodes	 Fully	connected		 ReLU	
Hidden	3	 2	Nodes	 Fully	connected		 ReLU	
Output	 2	Nodes	 Fully	connected		 Softmax	
	
Next	 we	 evaluated	 the	 performance	 of	 the	 machine	 learning	 algorithms	 and	
studied	 the	 impact	 of	 the	 alarm	 reset	 time	 delta	 t.	 Apart	 from	 Support	 Vector	
Machines,	we	observe	that	the	performance	of	the	algorithms	is	not	affected	by	
the	deltas	t	(see	Figure	2).	Random	Forest	and	Deep	Neural	Networks	show	the	
best	performance	with	a	prediction	accuracy	of	up	to	92%.	These	results	show	
that	our	system	is	reliable	even	if	we	replace	our	hypothetic	labels	when	we	get	
access	to	the	real	ground	truth	in	the	future.	
	



	
Figure	2.	Evaluation	of	 the	machine	 learning	algorithms	used	 to	predict	alarm	validity:	prediction	
accuracy	vs.	delta	t.	

Conclusions	
	
The	results	demonstrate	that	our	machine	learning	approaches	are	very	effective	
for	predicting	false	alarms	with	an	accuracy	of	up	to	92%.	These	results	can	be	
directly	used	by	typical	alarm	receiving	centers	for	prioritizing	alarms	and	thus	
have	 a	 large	 potential	 to	 significantly	 reduce	 the	 costs	 of	 dispatching	
intervention	forces.	
	
As	part	of	 future	work	we	will	 integrate	this	machine	 learning	approach	 in	our	
alarm	 data	 warehouse	 to	 enable	 stream	 and	 batch	 processing.	 The	 idea	 is	 to	
apply	 the	 machine	 learning	 algorithms	 in	 real	 time	 on	 alarm	 streams	 and	
correlate	the	results	with	the	alarm	response	to	potentially	further	increase	the	
accuracy	of	false	alarm	prediction.		
	
Contact	
Kurt	Stockinger,	Zurich	University	of	Applied	Sciences,	Switzerland	
Email:	Kurt.Stockinger@zhaw.ch	
	
References	
	
Varun	Chandola,	Arindam	Banerjee,	and	Vipin	Kumar.	2009.	Anomaly	detection:	
A	survey.	ACM	Comput.	Surv.	41,	3,	Article	15		
	
LeCun,	Y.,	Bengio,	Y.,	&	Hinton,	G.	2015.	Deep	learning.	Nature,	521(7553),	436-
444.	
	
Felix	Salfner,	Maren	Lenk,	and	Miroslaw	Malek.	2010.	A	survey	of	online	failure	
prediction	methods.	ACM	Comput.	Surv.	42,	3,	Article	10		

0.0%	

10.0%	

20.0%	

30.0%	

40.0%	

50.0%	

60.0%	

70.0%	

80.0%	

90.0%	

100.0%	

t	=	1min	 t	=	2min	 t	=	5min	 t	=	10min	

Random	Forest	

Support	Vector	Machine	

Logistic	Regression	

Deep	Neural	Network	


