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Abstract
Tandem repeat proteins are characterized by multiple sequential 
copies of  repeats with significant structural or sequence 
similarity. Tandem repeats evolve via repeat expansion, 
duplication and loss, and many protein families exhibit very 
diverse repeat counts. Identifying the complex relationships 
between homologous proteins and between individual repeats is 
a challenging task. Using tools developed in our group, we 
present a detailed phylogenetic analysis of  the repeats in the 
Armadillo Repeat Protein (ArmRP) family. 

The ArmRP family is very diverse, appearing throughout the 
eukaryotes and having a wide range of  functions. They are well 
characterized structurally, with ~42 amino acid repeats forming 
three alpha-helices which assemble into a solenoid structure. 
ArmRP are exciting candidates for protein design, as they have 
been shown to bind peptides in a modular manner (Reichen 
2016). 

Phylogenetic analysis of  tandem repeats has several unique 
challenges. Identifying homologous regions is complicated by 
the repetitive nature of  the sequence, which can cause register 
shifts when applying standard alignment tools. We surmount this 
problem using the Tandem Repeat Annotation Library (TRAL), 
a tool for accurately identifying repeats using circular profile 
hidden Markov models (Schaper 2015). After constructing a 
multiple alignment of  the repeats of  ArmRP representatives, we 
infer a phylogenetic tree relating the different ArmRP and use it 
to analyze the conservation and diversification patterns through 
evolution, based on the information about tandem repeat 
number, order and their distribution on phylogenies.
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Evolution
Determining the evolution of  tandem repeat proteins is a 
challenge. The repeats typically have significant homology (for 
instance, Asn39 is conserved in 51% of  human ArmRP; Leu22 
in 67% (Gul, 2017)). This leads to the hypothesis that most 
tandem repeats evolved through duplication and fusion events. A 
number of  mechanisms exist for the duplication/fusion of  
repeats, both individually and collectively through gene 
duplication/fusion. Combining this with gene-level speciation 
and duplications creating paralogs can explain the complex 
relationships we see among TR families. 

Tandem Repeat Annotation
One issue with identifying tandem repeats is that the first and 
last repeats are often truncated or atypical. With standard 
sequence alignment methods, this can lead to missing partial 
repeats and incorrect phase identification: 

Additionally, misalignments near the repeat boundaries can cause 
overlapping repeats which must be reconciled. 

These issues are resolved in the Tandem Repeat Annotation 
Library (TRAL) (Schaper 2015). The library makes use of  
circular profile hidden Markov models (cpHMM) to capture TR 
profiles.   

The cpHMM allows the TR region to start and end at any point 
in the repeat, making the phase inconsequential. Additionally, it 
prevents overlaps and provides a rigorous statistical model for 
dealing with insertions between and within repeats. 

TRAL contains functionality for constructing a cpHMM from a 
set of  possibly inconsistent or overlapping seed TR hits.

Conclusions & Outlook
We have shown that using cpHMM in TRAL we are able to 
improve our identification of  ArmRP repeats. It is able to 
capture the correct phase of  the repeats, as well as handle partial 
terminal repeats. 

Using the ArmRP alignment we construct phylogenetic trees of  
the repeats. Work continues to reconstruct detailed evolutionary 
histories for individual repeats. This will allow the identification 
of  repeat duplication and loss across this complex family. 

Work is also ongoing to incorporate duplication and fusion 
events into the model for phylogenetic inference. This would 
allow reconstruction of  the evolutionary events leading to 
tandem repeats.

Armadillo Repeat Proteins

Armadillo repeat proteins (ArmRP) are composed of  ~40 
amino acid repeats forming a alpha solenoid structure. Each 
repeat contains three alpha helices, with a hydrophobic core and 
conserved binding residues along the third helix. 

ArmRP bind extended peptides, which often are disordered 
prior to binding. Two amino acids binding each repeat. The 
conserved Asn at position 39 of  the repeat typically forms a 
hydrogen bond to the peptide backbone. Specificity is conferred 
by a shallow binding pocket between helix 3 of  adjacent repeats, 
which binds the peptide side chain. However, many ArmRP 
show weak specificity and engage multiple partners.

Designed ArmRP  YIIIM5AII bound to a (KR)5 peptide [5AEI] 
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Consensus Arm repeat. (Top) HMM logo based on a multiple 
alignment of  human Arm proteins by Gul (2017). Image 
generated with Skylign (Wheeler 2014).  
(Left) Repeat structure, showing hydrophobic core (grey), 
glycine turns (green), positive (blue), negative (red), and amidic 
(magenta) conserved residues. Side chains in the binding 
pocket are shown as sticks. 
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Circular TR sequence profile HMM (cpHMM). The alignment starts in any position within 
the TR with equal probability (blue). States representing alignment matches, insertions and 
deletions are included as in the HMMER model (black). Additional transitions are added 
from the end of  a repeat back to the beginning (red) to align multiple repeats. The alignment 
may end at any position with equal probability (green).
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Phylogenetic tree for human karyopherin (KPNA) proteins. Each protein has a 10 Arm 
repeats. Each repeat clusters together, indicating that the order of  repeats has not changed 
since the paralogous expansion. The support for this tree is too weak to draw conclusions 
about the relationships between repeats. Calculated using IQ-Tree (Nguyen 2015).

Canonical phase

Detected phase

(Top) Protein with 3.5 repeats with repeat boundaries assigned from literature. (Bottom) 
Incorrect tandem repeat identification, with non-standard boundaries, a missing partial 
repeat, and overlapping repeats.

Possible evolutionary histories for two 4-repeat proteins. a) TR expansion occurs before 
speciation, giving identical TR orders in both species. b) Both species undergo independent 
whole-gene duplications, giving similar subtree patterns in both species. c) Both species 
undergo independent TR duplications showing different patterns.
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Preliminary tree of  human ArmRP proteins 
with structural information in the Protein 
Data Bank. The shown tree does not 
explicitly model duplication events. Leaves 
are colored by gene. Calculated using 
IQ-Tree.
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ArmRP Prevalence
Prevalence of  ArmRP 
m e m b e r s a c r o s s 
m e t a z o a n s p e c i e s . 
ArmRP proteins were 
detected using TRAL 
across a 94 metazoan 
species. Between 14 and 
1 7 0 p r o t e i n s w e r e 
detected containing at 
least two consecutive 
repeats.
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