Full metadata record
DC FieldValueLanguage
dc.contributor.authorHerzog, Nicoleta-
dc.contributor.authorWilhelm, Dirk-
dc.contributor.authorKoch, Stefan-
dc.contributor.authorPurea, Armin-
dc.contributor.authorOsen, David-
dc.contributor.authorKnott, Benno-
dc.contributor.authorEngelke, Frank-
dc.date.accessioned2018-09-14T14:28:06Z-
dc.date.available2018-09-14T14:28:06Z-
dc.date.issued2016-
dc.identifier.issn1528-901Xde_CH
dc.identifier.issn0098-2202de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/10585-
dc.description.abstractThe fluid dynamics of a microturbine system that is applied in a device for chemical and biological analysis – a so-called magic-angle spinning (MAS) probe – is investigated. The drive fluid is pressurized air at ambient temperature provided by nozzles aligned on an intake spiral, driving a Pelton-type microturbine. Computational fluid dynamics (CFD) simulations have been performed and compared with fluid dynamics measurements of the MAS system with 1.3 mm rotor diameter for spinning rates between 23 kHz and 67 kHz. The main optimization criteria of the MAS system are rotor speed and turbine stability and not primarily efficiency, which is standard for turbomachinery applications. In the frame of fabrication tolerances, a sensitivity study has been carried out by varying the nozzles diameter and the nozzle position relative to the rotor. The presented fluid dynamics study of the microturbine system includes the analysis of local fluid flow values such as velocity, temperature, pressure, and Mach number, as well as global quantities like forces and driven torque acting on the turbine. Comparison with the experimental results shows good agreement of the microturbine efficiency. Furthermore, the parameter study of the nozzle diameter reveals optimization potential for this high-speed microturbine system employing a smaller nozzle diameter.de_CH
dc.language.isoende_CH
dc.publisherThe American Society of Mechanical Engineersde_CH
dc.relation.ispartofJournal of Fluids Engineeringde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectFluid dynamicsde_CH
dc.subjectTurbinede_CH
dc.subject.ddc620: Ingenieurwesende_CH
dc.titleAerodynamic optimization of a microturbine inserted in a magic-angle spinning systemde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Angewandte Mathematik und Physik (IAMP)de_CH
zhaw.organisationalunitInstitut für Energiesysteme und Fluid-Engineering (IEFE)de_CH
zhaw.funding.euNode_CH
zhaw.issue12de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.start121106de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume138de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.funding.zhawEntwicklung eines Ultra-Low-Temperature NMR Probenkopfes für hochgeschwindigkeits Magic-Angle-Spinning Anwendungen mit Hilfe von Computational Fluid Dynamics (CFD) Simulationende_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Herzog, N., Wilhelm, D., Koch, S., Purea, A., Osen, D., Knott, B., & Engelke, F. (2016). Aerodynamic optimization of a microturbine inserted in a magic-angle spinning system. Journal of Fluids Engineering, 138(12), 121106.
Herzog, N. et al. (2016) ‘Aerodynamic optimization of a microturbine inserted in a magic-angle spinning system’, Journal of Fluids Engineering, 138(12), p. 121106.
N. Herzog et al., “Aerodynamic optimization of a microturbine inserted in a magic-angle spinning system,” Journal of Fluids Engineering, vol. 138, no. 12, p. 121106, 2016.
HERZOG, Nicoleta, Dirk WILHELM, Stefan KOCH, Armin PUREA, David OSEN, Benno KNOTT und Frank ENGELKE, 2016. Aerodynamic optimization of a microturbine inserted in a magic-angle spinning system. Journal of Fluids Engineering. 2016. Bd. 138, Nr. 12, S. 121106
Herzog, Nicoleta, Dirk Wilhelm, Stefan Koch, Armin Purea, David Osen, Benno Knott, and Frank Engelke. 2016. “Aerodynamic Optimization of a Microturbine Inserted in a Magic-Angle Spinning System.” Journal of Fluids Engineering 138 (12): 121106.
Herzog, Nicoleta, et al. “Aerodynamic Optimization of a Microturbine Inserted in a Magic-Angle Spinning System.” Journal of Fluids Engineering, vol. 138, no. 12, 2016, p. 121106.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.