Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-1452
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhao, Shanyu-
dc.contributor.authorEmery, Olivier-
dc.contributor.authorWohlhauser, Anja-
dc.contributor.authorKoebel, Matthias M.-
dc.contributor.authorAdlhart, Christian-
dc.contributor.authorMalfait, Wim J.-
dc.date.accessioned2018-09-20T09:47:31Z-
dc.date.available2018-09-20T09:47:31Z-
dc.date.issued2018-
dc.identifier.issn0264-1275de_CH
dc.identifier.issn0261-3069de_CH
dc.identifier.issn1873-4197de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/10841-
dc.description.abstractFreeze-dried nanofibrous scaffolds are flexible, but typically have high thermal conductivities. Conversely, silica aerogel has an ultra-low thermal conductivity, but is brittle. Here, the impregnation of pullulan/PVA nanofiber scaffolds with hydrophobic silica aerogel decreased the thermal conductivity from 31.4 to 17.7 mW/(m·K). The compatibility between the silylated nanofibers and the silica aerogel promotes the overgrowth of silica particles onto the fiber surfaces and the fiber incorporation. The composites display improved compressive and tensile properties compared to the neat pullulan scaffold and silica aerogel. The composite's E-modulus is 234 kPa compared to 4 kPa for the pullulan scaffold and 102 kPa for the silica aerogel. The composite's tensile strength is five times higher than that of the silica aerogel. Because of its reduced brittleness, the pullulan-silica aerogel composites can be shaped using a sharp blade. The composites can sustain uniaxial compression up to 80% strain, but the decompressed composites display two times higher densities because the strain is partially irreversible. This densification reduces thermal conductivity to 16.3 mW/(m·K) and increases final compressive strength by a factor of seven. Both the as prepared and densified composites demonstrate unique material properties in terms of thermal conductivity, mechanical strength and machinability.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofMaterials & Designde_CH
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/de_CH
dc.subjectNanocompositede_CH
dc.subjectPolysaccharidede_CH
dc.subjectNanofibersde_CH
dc.subjectHybrid aerogelsde_CH
dc.subjectDensificationde_CH
dc.subject.ddc540: Chemiede_CH
dc.subject.ddc620: Ingenieurwesende_CH
dc.titleMerging flexibility with superinsulation : machinable, nanofibrous pullulan-silica aerogel compositesde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Chemie und Biotechnologie (ICBT)de_CH
dc.identifier.doi10.21256/zhaw-1452-
dc.identifier.doi10.1016/j.matdes.2018.09.010de_CH
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end302de_CH
zhaw.pages.start294de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume160de_CH
zhaw.embargo.end2020-12-15de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedFunktionsmaterialien und Nanotechnologiede_CH
Appears in collections:Publikationen Life Sciences und Facility Management



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.