Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-11585
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDujc, Jaka-
dc.contributor.authorForner-Cuenca, Antoni-
dc.contributor.authorMarmet, Philip-
dc.contributor.authorCochet, Magali-
dc.contributor.authorVetter, Roman-
dc.contributor.authorSchumacher, Jürgen-
dc.contributor.authorBoillat, Pierre-
dc.date.accessioned2018-10-10T11:36:23Z-
dc.date.available2018-10-10T11:36:23Z-
dc.date.issued2018-01-
dc.identifier.issn2381-6872de_CH
dc.identifier.issn2381-6910de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/11585-
dc.description.abstractWe present a macrohomogeneous two-phase model of a pro- ton exchange membrane fuel cell (PEFC). The model takes into account the mechanical compression of the gas diffusion layer (GDL), the two-phase flow of water, the transport of the gas species and the electrochemical reaction of the reactand gases. The model was used to simulate the behavior of a PEFC with a patterned GDL. The results of the reduced model, which considers only the mechanical compression and the two-phase flow, are compared to the experimental ex-situ imbibition data obtained by neutron radiography imaging. The results are in good agreement. Additionally, by using all the model features, a simulation of an operating fuel cell has been performed to study the intricate couplings in an operating fuel cell and to examine the patterned GDL effects. The model confirms that the patterned GDL design liberates the pre-defined domains from liquid water and thus locally increases the oxygen diffusivity. de_CH
dc.language.isoende_CH
dc.publisherThe American Society of Mechanical Engineersde_CH
dc.relation.ispartofJournal of Electrochemical Energy Conversion and Storagede_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectModelingde_CH
dc.subjectWater managementde_CH
dc.subjectPatterned GDLde_CH
dc.subjectProton exchange membrane fuel cellsde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleModelling the effects of using gas diffusion layers with patterned wettability for advanced water management in proton exchange membrane fuel cellsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1115/1.4038626de_CH
dc.identifier.doi10.21256/zhaw-11585-
zhaw.funding.euNode_CH
zhaw.issue2de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statussubmittedVersionde_CH
zhaw.volume15de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Show simple item record
Dujc, J., Forner-Cuenca, A., Marmet, P., Cochet, M., Vetter, R., Schumacher, J., & Boillat, P. (2018). Modelling the effects of using gas diffusion layers with patterned wettability for advanced water management in proton exchange membrane fuel cells. Journal of Electrochemical Energy Conversion and Storage, 15(2). https://doi.org/10.1115/1.4038626
Dujc, J. et al. (2018) ‘Modelling the effects of using gas diffusion layers with patterned wettability for advanced water management in proton exchange membrane fuel cells’, Journal of Electrochemical Energy Conversion and Storage, 15(2). Available at: https://doi.org/10.1115/1.4038626.
J. Dujc et al., “Modelling the effects of using gas diffusion layers with patterned wettability for advanced water management in proton exchange membrane fuel cells,” Journal of Electrochemical Energy Conversion and Storage, vol. 15, no. 2, Jan. 2018, doi: 10.1115/1.4038626.
DUJC, Jaka, Antoni FORNER-CUENCA, Philip MARMET, Magali COCHET, Roman VETTER, Jürgen SCHUMACHER und Pierre BOILLAT, 2018. Modelling the effects of using gas diffusion layers with patterned wettability for advanced water management in proton exchange membrane fuel cells. Journal of Electrochemical Energy Conversion and Storage. Januar 2018. Bd. 15, Nr. 2. DOI 10.1115/1.4038626
Dujc, Jaka, Antoni Forner-Cuenca, Philip Marmet, Magali Cochet, Roman Vetter, Jürgen Schumacher, and Pierre Boillat. 2018. “Modelling the Effects of Using Gas Diffusion Layers with Patterned Wettability for Advanced Water Management in Proton Exchange Membrane Fuel Cells.” Journal of Electrochemical Energy Conversion and Storage 15 (2). https://doi.org/10.1115/1.4038626.
Dujc, Jaka, et al. “Modelling the Effects of Using Gas Diffusion Layers with Patterned Wettability for Advanced Water Management in Proton Exchange Membrane Fuel Cells.” Journal of Electrochemical Energy Conversion and Storage, vol. 15, no. 2, Jan. 2018, https://doi.org/10.1115/1.4038626.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.