Full metadata record
DC FieldValueLanguage
dc.contributor.authorLopez de Obeso, Luis-
dc.contributor.authorMock, Ralf Günter-
dc.contributor.authorZipper, Christian-
dc.date.accessioned2018-12-20T14:22:15Z-
dc.date.available2018-12-20T14:22:15Z-
dc.date.issued2016-
dc.identifier.isbn978-3-9524695-0-7de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/14088-
dc.description.abstractIn response to the increased complexity of socio-technical systems, risk management strategies become accordingly complex and their associated risk engineering approaches are stretched to their practical and methodological limits, as is the case of the Failure Mode and Effects Analysis (FMEA). In recent years resilience engineering has emerged as the discipline to close this complexity gap. This contribution links the principles of the novel Functional Resonance Analysis Method (FRAM) and FMEA, a well-established method, in order to propose a feasible approach to manage system complexity and achieving thus an ISO 31000-compliant approach to operationalize resilience engineering. For this purpose, the case study of temperature control in smart buildings was selected to mirror the increase of complexity of a socio-technical system. The combined FRAM-FMEA method was successfully applied and yielded results above the single application of the respective methods. The results of the case study show that during normal operation conditions temperature control on small buildings operates safely, being only vulnerable to extreme weather patterns and contradicting behavior among users. However, with the introduction of Internet of Things (IoT) the system becomes vulnerable to IT threats that can gravely endanger the system. On the methodological level, the results show that the combined method is suitable to semi-quantitatively assess resilience: it shows where the system can fail and what could it happen. While it inherits some of the limitations of the original methodologies, its application makes resilience analyses more efficient. It can be then concluded that FRAM can accurately describe small sociotechnical systems (<20 analyzed functions) but it may be challenging to apply for large projects (e.g. critical infrastructures). Nonetheless FRAM demonstrated to be a useful communication tool with experts and combined with FMEA, a practical semi-quantitative approach to resilience engineering.de_CH
dc.language.isoende_CH
dc.publisherGlobal Risk Forumde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectISO 31000de_CH
dc.subjectInternet of Thingsde_CH
dc.subjectSmart buildingde_CH
dc.subjectResilience engineeringde_CH
dc.subject.ddc004: Informatikde_CH
dc.subject.ddc690: Hausbau und Bauhandwerkde_CH
dc.titleOperationalization of an ISO 31000-compliant resilience engineering method, applied to the temperature control in a smart buildingde_CH
dc.typeKonferenz: Paperde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Nachhaltige Entwicklung (INE)de_CH
zhaw.conference.details6th International Disaster and Risk Conference (IDRC Davos 2016), Davos, 28 August - 1 September 2016de_CH
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end397de_CH
zhaw.pages.start393de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.publication.reviewNot specifiedde_CH
zhaw.title.proceedingsProceedings of the 6th International Disaster and Risk Conference, : IDRC Davos 2016, Extended Abstract Collection, Integrative Risk Management - towards resilient cities, 28 August - 01 Septemberde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Lopez de Obeso, L., Mock, R. G., & Zipper, C. (2016). Operationalization of an ISO 31000-compliant resilience engineering method, applied to the temperature control in a smart building [Conference paper]. Proceedings of the 6th International Disaster and Risk Conference, : IDRC Davos 2016, Extended Abstract Collection, Integrative Risk Management - towards Resilient Cities, 28 August - 01 September, 393–397.
Lopez de Obeso, L., Mock, R.G. and Zipper, C. (2016) ‘Operationalization of an ISO 31000-compliant resilience engineering method, applied to the temperature control in a smart building’, in Proceedings of the 6th International Disaster and Risk Conference, : IDRC Davos 2016, Extended Abstract Collection, Integrative Risk Management - towards resilient cities, 28 August - 01 September. Global Risk Forum, pp. 393–397.
L. Lopez de Obeso, R. G. Mock, and C. Zipper, “Operationalization of an ISO 31000-compliant resilience engineering method, applied to the temperature control in a smart building,” in Proceedings of the 6th International Disaster and Risk Conference, : IDRC Davos 2016, Extended Abstract Collection, Integrative Risk Management - towards resilient cities, 28 August - 01 September, 2016, pp. 393–397.
LOPEZ DE OBESO, Luis, Ralf Günter MOCK und Christian ZIPPER, 2016. Operationalization of an ISO 31000-compliant resilience engineering method, applied to the temperature control in a smart building. In: Proceedings of the 6th International Disaster and Risk Conference, : IDRC Davos 2016, Extended Abstract Collection, Integrative Risk Management - towards resilient cities, 28 August - 01 September. Conference paper. Global Risk Forum. 2016. S. 393–397. ISBN 978-3-9524695-0-7
Lopez de Obeso, Luis, Ralf Günter Mock, and Christian Zipper. 2016. “Operationalization of an ISO 31000-Compliant Resilience Engineering Method, Applied to the Temperature Control in a Smart Building.” Conference paper. In Proceedings of the 6th International Disaster and Risk Conference, : IDRC Davos 2016, Extended Abstract Collection, Integrative Risk Management - towards Resilient Cities, 28 August - 01 September, 393–97. Global Risk Forum.
Lopez de Obeso, Luis, et al. “Operationalization of an ISO 31000-Compliant Resilience Engineering Method, Applied to the Temperature Control in a Smart Building.” Proceedings of the 6th International Disaster and Risk Conference, : IDRC Davos 2016, Extended Abstract Collection, Integrative Risk Management - towards Resilient Cities, 28 August - 01 September, Global Risk Forum, 2016, pp. 393–97.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.