Full metadata record
DC FieldValueLanguage
dc.contributor.authorBoiger, Gernot Kurt-
dc.date.accessioned2020-08-24T08:18:51Z-
dc.date.available2020-08-24T08:18:51Z-
dc.date.issued2020-
dc.identifier.isbn978-0-12-818345-8de_CH
dc.identifier.urihttps://books.google.ch/books?id=xazWDwAAQBAJ&pg=PA115&lpg=PA115&dq=10.1016/B978-0-12-818345-8.00006-8&source=bl&ots=aozVEjox5M&sig=ACfU3U274MJJWxAvqI85tYYDUxOJRtbImg&hl=de&sa=X&ved=2ahUKEwiTtZ_M4abrAhUKThUIHam1AAoQ6AEwAHoECAEQAQ#v=onepage&q=10.1016%2FB978-0-12-818345-8.00006-8&f=falsede_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/20378-
dc.description.abstractChapter 6 describes the applied methodology, where sub-chapter 6.1 presents some fundamentals behind the work. Initially the prevailing physical conditions as well as resulting model simplifications are discussed. In a next step a fluid structure interaction (FSI) tool and a digital fibre reconstruction (DFR) utility are laid out in short. Furthermore sub-chapter 6.1 presents three important reasons as to why the consideration of particle shape effects in filtration simulation is imperative: • The particle-inertia-to-fluid force ratio, represented by the particle relaxation time, is strongly shape dependent. • Particles with small, angular particle relaxation times experience the non-spherical particle slip effect. • Particles with large, angular particle relaxation times experience the non-spherical particle bulk effect. Three basic concepts, which form the roots of the presented particle model, are discussed in sub-chapter 6.2: the Lagrangian simulation approach, the force-to-motion concept and the large particle model. Sub-chapter 6.3 is the core part of this book-chapter and is about the intrinsics of the (non-) spherical dirt particle and deposition solvers. Basic, non-spherical modelling concepts, as well as force-interaction implementations and drag-to-lift force calculation schemes are discussed. Benchmark examples of solver functionality are given as well. The decisive problem of numerical instability due to Explicit Euler temporal particle movement discretization is addressed and amended in sub-chapter 6.4. A possible solution, based on the development of an adaptive time stepping scheme is given. Sub-chapter 6.5 provides insight into the workflow behind the code and into the C++ software design pattern of the relevant particle solver classes as well as into their embedding within the OpenFOAM® program structure. A complete description of all particle-solver specific, user-definable input parameters, is given too.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofMultiphysics Modelling of Fluid-Particulate Systemsde_CH
dc.relation.ispartofseriesMultiphysics: Advances and Applicationsde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectSimulationde_CH
dc.subjectCFDde_CH
dc.subjectOpenFoamde_CH
dc.subjectNon-spherical particlede_CH
dc.subjectFiltrationde_CH
dc.subjectParticle laden flowde_CH
dc.subject.ddc530: Physikde_CH
dc.titleMethodology : large (non)spherical particle modeling in the context of fluid filtration applicationsde_CH
dc.typeBuchbeitragde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1016/B978-0-12-818345-8.00006-8de_CH
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end248de_CH
zhaw.pages.start115de_CH
zhaw.parentwork.editorKhawaja, Hassan-
zhaw.parentwork.editorMoatamedi, Mojtaba-
zhaw.publication.statuspublishedVersionde_CH
zhaw.publication.reviewEditorial reviewde_CH
zhaw.webfeedVerfahrenstechnikde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Boiger, G. K. (2020). Methodology : large (non)spherical particle modeling in the context of fluid filtration applications. In H. Khawaja & M. Moatamedi (Eds.), Multiphysics Modelling of Fluid-Particulate Systems (pp. 115–248). Elsevier. https://doi.org/10.1016/B978-0-12-818345-8.00006-8
Boiger, G.K. (2020) ‘Methodology : large (non)spherical particle modeling in the context of fluid filtration applications’, in H. Khawaja and M. Moatamedi (eds) Multiphysics Modelling of Fluid-Particulate Systems. Elsevier, pp. 115–248. Available at: https://doi.org/10.1016/B978-0-12-818345-8.00006-8.
G. K. Boiger, “Methodology : large (non)spherical particle modeling in the context of fluid filtration applications,” in Multiphysics Modelling of Fluid-Particulate Systems, H. Khawaja and M. Moatamedi, Eds. Elsevier, 2020, pp. 115–248. doi: 10.1016/B978-0-12-818345-8.00006-8.
BOIGER, Gernot Kurt, 2020. Methodology : large (non)spherical particle modeling in the context of fluid filtration applications. In: Hassan KHAWAJA und Mojtaba MOATAMEDI (Hrsg.), Multiphysics Modelling of Fluid-Particulate Systems [online]. Elsevier. S. 115–248. ISBN 978-0-12-818345-8. Verfügbar unter: https://books.google.ch/books?id=xazWDwAAQBAJ&pg=PA115&lpg=PA115&dq=10.1016/B978-0-12-818345-8.00006-8&source=bl&ots=aozVEjox5M&sig=ACfU3U274MJJWxAvqI85tYYDUxOJRtbImg&hl=de&sa=X&ved=2ahUKEwiTtZ_M4abrAhUKThUIHam1AAoQ6AEwAHoECAEQAQ#v=onepage&q=10.1016%2FB978-0-12-818345-8.00006-8&f=false
Boiger, Gernot Kurt. 2020. “Methodology : Large (Non)spherical Particle Modeling in the Context of Fluid Filtration Applications.” In Multiphysics Modelling of Fluid-Particulate Systems, edited by Hassan Khawaja and Mojtaba Moatamedi, 115–248. Elsevier. https://doi.org/10.1016/B978-0-12-818345-8.00006-8.
Boiger, Gernot Kurt. “Methodology : Large (Non)spherical Particle Modeling in the Context of Fluid Filtration Applications.” Multiphysics Modelling of Fluid-Particulate Systems, edited by Hassan Khawaja and Mojtaba Moatamedi, Elsevier, 2020, pp. 115–248, https://doi.org/10.1016/B978-0-12-818345-8.00006-8.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.