Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlbert, Carlo-
dc.contributor.authorGaia, Filippo-
dc.contributor.authorUlzega, Simone-
dc.date.accessioned2020-09-17T12:55:19Z-
dc.date.available2020-09-17T12:55:19Z-
dc.date.issued2020-05-
dc.identifier.urihttps://presentations.copernicus.org/EGU2020/EGU2020-15185_presentation.pdfde_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/20502-
dc.descriptionOral presentationde_CH
dc.description.abstractProxies of solar activity have revealed repeated Grand Minima that occur with a certain regularity associated with the well-known Gleissberg and Süss/deVries cycles. These and other prominent cycles in the spectrum of solar activity are also seen in the spectrum of the planetary torque exerted on the solar tachocline, which has revived the hypothesis of a planetary influence on solar activity. It is not clear, however, how the extremely weak planetary forcing could influence the solar magnetic activity. Here, we suggest that stochastic resonance could explain the necessary amplification of the forcing and provide numerical evidence from stochastic time-delayed dynamo models. If the intrinsic noise of the solar dynamo allows for a frequent switching between active and quiescent stable states, tiny periodic forcings can be greatly amplified, provided the dynamo is poised close to a critical point. Such a forcing could be caused by a tidal modulation of the minimal magnetic field required for flux-tube buoyancy.de_CH
dc.language.isoende_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectPhysicsde_CH
dc.subjectSolar physicsde_CH
dc.subject.ddc500: Naturwissenschaftende_CH
dc.subject.ddc510: Mathematikde_CH
dc.titleCan stochastic resonance explain the amplification of planetary tidal forcing?de_CH
dc.typeKonferenz: Sonstigesde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Computational Life Sciences (ICLS)de_CH
zhaw.conference.detailsEGU General Assembly 2020, Online, 4-8 May 2020de_CH
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.publication.reviewPeer review (Abstract)de_CH
zhaw.webfeedBiomedical Simulationde_CH
zhaw.funding.zhawBISTOM - Bayesian Inference with Stochastic Modelsde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
There are no files associated with this item.
Show simple item record
Albert, C., Gaia, F., & Ulzega, S. (2020, May). Can stochastic resonance explain the amplification of planetary tidal forcing? EGU General Assembly 2020, Online, 4-8 May 2020. https://presentations.copernicus.org/EGU2020/EGU2020-15185_presentation.pdf
Albert, C., Gaia, F. and Ulzega, S. (2020) ‘Can stochastic resonance explain the amplification of planetary tidal forcing?’, in EGU General Assembly 2020, Online, 4-8 May 2020. Available at: https://presentations.copernicus.org/EGU2020/EGU2020-15185_presentation.pdf.
C. Albert, F. Gaia, and S. Ulzega, “Can stochastic resonance explain the amplification of planetary tidal forcing?,” in EGU General Assembly 2020, Online, 4-8 May 2020, May 2020. [Online]. Available: https://presentations.copernicus.org/EGU2020/EGU2020-15185_presentation.pdf
ALBERT, Carlo, Filippo GAIA und Simone ULZEGA, 2020. Can stochastic resonance explain the amplification of planetary tidal forcing? In: EGU General Assembly 2020, Online, 4-8 May 2020 [online]. Conference presentation. Mai 2020. Verfügbar unter: https://presentations.copernicus.org/EGU2020/EGU2020-15185_presentation.pdf
Albert, Carlo, Filippo Gaia, and Simone Ulzega. 2020. “Can Stochastic Resonance Explain the Amplification of Planetary Tidal Forcing?” Conference presentation. In EGU General Assembly 2020, Online, 4-8 May 2020. https://presentations.copernicus.org/EGU2020/EGU2020-15185_presentation.pdf.
Albert, Carlo, et al. “Can Stochastic Resonance Explain the Amplification of Planetary Tidal Forcing?” EGU General Assembly 2020, Online, 4-8 May 2020, 2020, https://presentations.copernicus.org/EGU2020/EGU2020-15185_presentation.pdf.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.