Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-23357
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIgwe, Kay C.-
dc.contributor.authorLao, Patrick J.-
dc.contributor.authorVorburger, Robert S.-
dc.contributor.authorBanerjee, Arit-
dc.contributor.authorRivera, Andres-
dc.contributor.authorChesebro, Anthony-
dc.contributor.authorLaing, Krystal-
dc.contributor.authorManly, Jennifer J.-
dc.contributor.authorBrickman, Adam M.-
dc.date.accessioned2021-10-30T12:33:20Z-
dc.date.available2021-10-30T12:33:20Z-
dc.date.issued2021-10-
dc.identifier.issn0730-725Xde_CH
dc.identifier.issn1873-5894de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/23357-
dc.descriptionhttps://pubmed.ncbi.nlm.nih.gov/34662699/de_CH
dc.description.abstractWhite matter hyperintensities (WMH) are areas of increased signal visualized on T2-weighted fluid attenuated inversion recovery (FLAIR) brain magnetic resonance imaging (MRI) sequences. They are typically attributed to small vessel cerebrovascular disease in the context of aging. Among older adults, WMH are associated with risk of cognitive decline and dementia, stroke, and various other health outcomes. There has been increasing interest in incorporating quantitative WMH measurement as outcomes in clinical trials, observational research, and clinical settings. Here, we present a novel, fully automated, unsupervised detection algorithm for WMH segmentation and quantification. The algorithm uses a robust preprocessing pipeline, including brain extraction and a sample-specific mask that incorporates spatial information for automatic false positive reduction, and a half Gaussian mixture model (HGMM). The method was evaluated in 24 participants with varying degrees of WMH (4.9-78.6 cm3) from a community-based study of aging and dementia with dice coefficient, sensitivity, specificity, correlation, and bias relative to the ground truth manual segmentation approach performed by two expert raters. Results were compared with those derived from commonly used available WMH segmentation packages, including SPM lesion probability algorithm (LPA), SPM lesion growing algorithm (LGA), and Brain Intensity AbNormality Classification Algorithm (BIANCA). The HGMM algorithm derived WMH values that had a dice score of 0.87, sensitivity of 0.89, and specificity of 0.99 compared to ground truth. White matter hyperintensity volumes derived with HGMM were strongly correlated with ground truth values (r = 0.97, p = 3.9e-16), with no observable bias (-1.1 [-2.6, 0.44], p-value = 0.16). Our novel algorithm uniquely uses a robust preprocessing pipeline and a half-Gaussian mixture model to segment WMH with high agreement with ground truth for large scale studies of brain aging.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofMagnetic Resonance Imagingde_CH
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/de_CH
dc.subjectAutomated segmentationde_CH
dc.subjectHalf Gaussian mixture modelde_CH
dc.subjectMixture modelde_CH
dc.subjectSmall vessel cerebrovascular diseasede_CH
dc.subjectWhite matter hyperintensityde_CH
dc.subject.ddc616.8: Neurologie und Krankheiten des Nervensystemsde_CH
dc.titleAutomatic quantification of white matter hyperintensities on T2-weighted fluid attenuated inversion recovery magnetic resonance imagingde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Computational Life Sciences (ICLS)de_CH
dc.identifier.doi10.1016/j.mri.2021.10.007de_CH
dc.identifier.doi10.21256/zhaw-23357-
dc.identifier.pmid34662699de_CH
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end79de_CH
zhaw.pages.start71de_CH
zhaw.publication.statusacceptedVersionde_CH
zhaw.volume85de_CH
zhaw.embargo.end2022-10-16de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedData Management & Visualisationde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
File Description SizeFormat 
2021_Igwe-etal_Quantification-white-matter-hyperintensities.pdfAccepted Version809.9 kBAdobe PDFThumbnail
View/Open
Show simple item record
Igwe, K. C., Lao, P. J., Vorburger, R. S., Banerjee, A., Rivera, A., Chesebro, A., Laing, K., Manly, J. J., & Brickman, A. M. (2021). Automatic quantification of white matter hyperintensities on T2-weighted fluid attenuated inversion recovery magnetic resonance imaging. Magnetic Resonance Imaging, 85, 71–79. https://doi.org/10.1016/j.mri.2021.10.007
Igwe, K.C. et al. (2021) ‘Automatic quantification of white matter hyperintensities on T2-weighted fluid attenuated inversion recovery magnetic resonance imaging’, Magnetic Resonance Imaging, 85, pp. 71–79. Available at: https://doi.org/10.1016/j.mri.2021.10.007.
K. C. Igwe et al., “Automatic quantification of white matter hyperintensities on T2-weighted fluid attenuated inversion recovery magnetic resonance imaging,” Magnetic Resonance Imaging, vol. 85, pp. 71–79, Oct. 2021, doi: 10.1016/j.mri.2021.10.007.
IGWE, Kay C., Patrick J. LAO, Robert S. VORBURGER, Arit BANERJEE, Andres RIVERA, Anthony CHESEBRO, Krystal LAING, Jennifer J. MANLY und Adam M. BRICKMAN, 2021. Automatic quantification of white matter hyperintensities on T2-weighted fluid attenuated inversion recovery magnetic resonance imaging. Magnetic Resonance Imaging. Oktober 2021. Bd. 85, S. 71–79. DOI 10.1016/j.mri.2021.10.007
Igwe, Kay C., Patrick J. Lao, Robert S. Vorburger, Arit Banerjee, Andres Rivera, Anthony Chesebro, Krystal Laing, Jennifer J. Manly, and Adam M. Brickman. 2021. “Automatic Quantification of White Matter Hyperintensities on T2-Weighted Fluid Attenuated Inversion Recovery Magnetic Resonance Imaging.” Magnetic Resonance Imaging 85 (October): 71–79. https://doi.org/10.1016/j.mri.2021.10.007.
Igwe, Kay C., et al. “Automatic Quantification of White Matter Hyperintensities on T2-Weighted Fluid Attenuated Inversion Recovery Magnetic Resonance Imaging.” Magnetic Resonance Imaging, vol. 85, Oct. 2021, pp. 71–79, https://doi.org/10.1016/j.mri.2021.10.007.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.