Full metadata record
DC FieldValueLanguage
dc.contributor.authorGant, Francesco-
dc.contributor.authorGhirardo, Giulio-
dc.contributor.authorCuquel, Alexis-
dc.contributor.authorBothien, Mirko-
dc.date.accessioned2021-11-11T15:04:07Z-
dc.date.available2021-11-11T15:04:07Z-
dc.date.issued2022-
dc.identifier.issn0742-4795de_CH
dc.identifier.issn1528-8919de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/23481-
dc.description.abstractThe stability of thermoacoustic systems is often regulated by the time delay between acoustic perturbations and corresponding heat release fluctuations. An accurate estimate of this value is of great importance in applications, since even small modifications can introduce significant changes in the system behavior. Different studies show that the nonlinear delayed dynamics typical of these systems can be well captured with low-order models. In the present work, a method is introduced to estimate the most likely value of the time delay of a single thermoacoustic mode from a measured acoustic pressure signal. The mode of interest is modeled by an oscillator equation, with a nonlinear delayed forcing term modeling the deterministic flame contribution and an additive white Gaussian noise to embed the stochastic combustion noise. Additionally, other thermoacoustic relevant parameters are estimated. The model accounts for a flame gain, for a flame saturation coefficient, for a linear acoustic damping and for the background combustion noise intensity. The pressure data time series is statistically analyzed and the set of unknown parameters is identified. Validation is performed with respect to synthetically generated time series and low order model simulations, for which the underlying delay is known a priori. A discussion follows about the accuracy of the method, in particular a comparison with existing methods is drawn.de_CH
dc.language.isoende_CH
dc.publisherThe American Society of Mechanical Engineersde_CH
dc.relation.ispartofJournal of Engineering for Gas Turbines and Powerde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectThermoacousticsde_CH
dc.subjectDelayde_CH
dc.subject.ddc530: Physikde_CH
dc.subject.ddc620: Ingenieurwesende_CH
dc.titleDelay identification in thermoacousticsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Energiesysteme und Fluid-Engineering (IEFE)de_CH
dc.identifier.doi10.1115/1.4052060de_CH
zhaw.funding.euNode_CH
zhaw.issue2de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.start021005de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume144de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Gant, F., Ghirardo, G., Cuquel, A., & Bothien, M. (2022). Delay identification in thermoacoustics. Journal of Engineering for Gas Turbines and Power, 144(2), 21005. https://doi.org/10.1115/1.4052060
Gant, F. et al. (2022) ‘Delay identification in thermoacoustics’, Journal of Engineering for Gas Turbines and Power, 144(2), p. 021005. Available at: https://doi.org/10.1115/1.4052060.
F. Gant, G. Ghirardo, A. Cuquel, and M. Bothien, “Delay identification in thermoacoustics,” Journal of Engineering for Gas Turbines and Power, vol. 144, no. 2, p. 021005, 2022, doi: 10.1115/1.4052060.
GANT, Francesco, Giulio GHIRARDO, Alexis CUQUEL und Mirko BOTHIEN, 2022. Delay identification in thermoacoustics. Journal of Engineering for Gas Turbines and Power. 2022. Bd. 144, Nr. 2, S. 021005. DOI 10.1115/1.4052060
Gant, Francesco, Giulio Ghirardo, Alexis Cuquel, and Mirko Bothien. 2022. “Delay Identification in Thermoacoustics.” Journal of Engineering for Gas Turbines and Power 144 (2): 21005. https://doi.org/10.1115/1.4052060.
Gant, Francesco, et al. “Delay Identification in Thermoacoustics.” Journal of Engineering for Gas Turbines and Power, vol. 144, no. 2, 2022, p. 21005, https://doi.org/10.1115/1.4052060.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.