Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-24642
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHerzog, Nicoleta-
dc.contributor.authorWeber, Alexander Séverin-
dc.contributor.authorPurea, Armin-
dc.contributor.authorOsen, David-
dc.contributor.authorKnott, Benno-
dc.contributor.authorEngelke, Frank-
dc.contributor.authorWilhelm, Dirk-
dc.date.accessioned2022-03-18T09:29:14Z-
dc.date.available2022-03-18T09:29:14Z-
dc.date.issued2022-08-
dc.identifier.issn0098-2202de_CH
dc.identifier.issn1528-901Xde_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/24642-
dc.description.abstractWe investigate the fluid dynamics of a microturbine system that is applied in a device for chemical and biological analysis—a so-called magic angle spinning (MAS) nuclear magnetic resonance (NMR) probe. The present system is utilized in a wide temperature range from 45K to 293 K. Pressurized air, nitrogen, or helium are used to drive a Pelton type microturbine. This turbine is mounted on a MAS rotor with a diameter between 0.7mm and 3.2 mm. The rotor system is equipped with a pressurized gas bearing that is operated by the same gas species as the turbine. Computational fluid dynamics (CFD) simulations have been performed and compared with fluid dynamics measurements of the MAS system for different diameters, temperatures, and spinning rates between 23 kHz and 120 kHz. To our knowledge, this work is the first comprehensive CFD and experimental study of such a wide temperature range that has been carried out for microturbines with pressurized gas bearings. The results show good agreement between measurements and CFD simulations with appropriate (real) gas models, i.e., the ideal gas model for air at room temperature, Peng–Robinson model for nitrogen at 105 K, and ideal gas model for helium at 45 K.de_CH
dc.language.isoende_CH
dc.publisherThe American Society of Mechanical Engineersde_CH
dc.relation.ispartofJournal of Fluids Engineeringde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectNuclear magnetic resonancede_CH
dc.subjectMagic angle spinningde_CH
dc.subjectMicroturbinede_CH
dc.subject.ddc620: Ingenieurwesende_CH
dc.titleUltra low temperature microturbine for magic angle spinning systemde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Angewandte Mathematik und Physik (IAMP)de_CH
zhaw.organisationalunitInstitut für Energiesysteme und Fluid-Engineering (IEFE)de_CH
dc.identifier.doi10.1115/1.4053746de_CH
dc.identifier.doi10.21256/zhaw-24642-
zhaw.funding.euNode_CH
zhaw.issue8de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end081205-12de_CH
zhaw.pages.start081205-1de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume144de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.funding.zhawEntwicklung eines Ultra-Low-Temperature NMR Probenkopfes für hochgeschwindigkeits Magic-Angle-Spinning Anwendungen mit Hilfe von Computational Fluid Dynamics (CFD) Simulationende_CH
zhaw.author.additionalYesde_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2022_Herzog-etal_Ultra-low-temp-MAS_JFE.pdf3.72 MBAdobe PDFThumbnail
View/Open
Show simple item record
Herzog, N., Weber, A. S., Purea, A., Osen, D., Knott, B., Engelke, F., & Wilhelm, D. (2022). Ultra low temperature microturbine for magic angle spinning system. Journal of Fluids Engineering, 144(8), 081205–081201. https://doi.org/10.1115/1.4053746
Herzog, N. et al. (2022) ‘Ultra low temperature microturbine for magic angle spinning system’, Journal of Fluids Engineering, 144(8), pp. 081205–1–081205–12. Available at: https://doi.org/10.1115/1.4053746.
N. Herzog et al., “Ultra low temperature microturbine for magic angle spinning system,” Journal of Fluids Engineering, vol. 144, no. 8, pp. 081205–1–081205–12, Aug. 2022, doi: 10.1115/1.4053746.
HERZOG, Nicoleta, Alexander Séverin WEBER, Armin PUREA, David OSEN, Benno KNOTT, Frank ENGELKE und Dirk WILHELM, 2022. Ultra low temperature microturbine for magic angle spinning system. Journal of Fluids Engineering. August 2022. Bd. 144, Nr. 8, S. 081205–1–081205–12. DOI 10.1115/1.4053746
Herzog, Nicoleta, Alexander Séverin Weber, Armin Purea, David Osen, Benno Knott, Frank Engelke, and Dirk Wilhelm. 2022. “Ultra Low Temperature Microturbine for Magic Angle Spinning System.” Journal of Fluids Engineering 144 (8): 081205–1. https://doi.org/10.1115/1.4053746.
Herzog, Nicoleta, et al. “Ultra Low Temperature Microturbine for Magic Angle Spinning System.” Journal of Fluids Engineering, vol. 144, no. 8, Aug. 2022, pp. 081205–1, https://doi.org/10.1115/1.4053746.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.