Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-26051
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarmet, Philip-
dc.contributor.authorHolzer, Lorenz-
dc.contributor.authorGrolig, Jan G.-
dc.contributor.authorBausinger, Holger-
dc.contributor.authorMai, Andreas-
dc.contributor.authorBrader, Joseph M.-
dc.contributor.authorHocker, Thomas-
dc.date.accessioned2022-11-11T14:44:09Z-
dc.date.available2022-11-11T14:44:09Z-
dc.date.issued2021-
dc.identifier.issn1463-9076de_CH
dc.identifier.issn1463-9084de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/26051-
dc.description.abstractMixed ionic and electronic conducting (MIEC) materials recently gained much interest for use as anodes in solid oxide fuel cell (SOFC) applications. However, many processes in MIEC-based porous anodes are still poorly understood and the appropriate interpretation of corresponding electrochemical impedance spectroscopy (EIS) data is challenging. Therefore, a model which is capable to capture all relevant physico-chemical processes is a crucial prerequisite for systematic materials optimization. In this contribution we present a comprehensive model for MIEC-based anodes providing both the DC-behaviour and the EIS-spectra. The model enables one to distinguish between the impact of the chemical capacitance, the reaction resistance, the gas impedance and the charge transport resistance on the EIS-spectrum and therewith allows its appropriate interpretation for button cell conditions. Typical MIEC-features are studied with the model applied to gadolinium doped ceria (CGO) anodes with different microstructures. The results obtained for CGO anodes reveal the spatial distribution of the reaction zone and associated transport distances for the charge carriers and gas species. Moreover, parameter spaces for transport limited and surface reaction limited situations are depicted. By linking bulk material properties, microstructure effects and the cell design with the cell performance, we present a way towards a systematic materials optimization for MIEC-based anodes.de_CH
dc.language.isoende_CH
dc.publisherRoyal Society of Chemistryde_CH
dc.relation.ispartofPhysical Chemistry Chemical Physicsde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectSOFCde_CH
dc.subjectMultiphysics modelingde_CH
dc.subjectMIECde_CH
dc.subjectCGOde_CH
dc.subjectElectrochemical impedance spectroscopyde_CH
dc.subjectChemical capacitancede_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleModeling the impedance response and steady state behaviour of porous CGO-based MIEC anodesde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1039/D1CP01962Gde_CH
dc.identifier.doi10.21256/zhaw-26051-
zhaw.funding.euNode_CH
zhaw.issue40de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end23074de_CH
zhaw.pages.start23042de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume23de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedMultiphysics Modelingde_CH
zhaw.funding.zhawVersatile oxide fuel cell microstructures employing WGS active titanate anode current collectors compatible to ferritic stainless steel interconnects (VOLTA)de_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2021_Marmet-etal_Impedance-repsonse-steady-state-behaviour-modeling.pdf8.27 MBAdobe PDFThumbnail
View/Open
Show simple item record
Marmet, P., Holzer, L., Grolig, J. G., Bausinger, H., Mai, A., Brader, J. M., & Hocker, T. (2021). Modeling the impedance response and steady state behaviour of porous CGO-based MIEC anodes. Physical Chemistry Chemical Physics, 23(40), 23042–23074. https://doi.org/10.1039/D1CP01962G
Marmet, P. et al. (2021) ‘Modeling the impedance response and steady state behaviour of porous CGO-based MIEC anodes’, Physical Chemistry Chemical Physics, 23(40), pp. 23042–23074. Available at: https://doi.org/10.1039/D1CP01962G.
P. Marmet et al., “Modeling the impedance response and steady state behaviour of porous CGO-based MIEC anodes,” Physical Chemistry Chemical Physics, vol. 23, no. 40, pp. 23042–23074, 2021, doi: 10.1039/D1CP01962G.
MARMET, Philip, Lorenz HOLZER, Jan G. GROLIG, Holger BAUSINGER, Andreas MAI, Joseph M. BRADER und Thomas HOCKER, 2021. Modeling the impedance response and steady state behaviour of porous CGO-based MIEC anodes. Physical Chemistry Chemical Physics. 2021. Bd. 23, Nr. 40, S. 23042–23074. DOI 10.1039/D1CP01962G
Marmet, Philip, Lorenz Holzer, Jan G. Grolig, Holger Bausinger, Andreas Mai, Joseph M. Brader, and Thomas Hocker. 2021. “Modeling the Impedance Response and Steady State Behaviour of Porous CGO-Based MIEC Anodes.” Physical Chemistry Chemical Physics 23 (40): 23042–74. https://doi.org/10.1039/D1CP01962G.
Marmet, Philip, et al. “Modeling the Impedance Response and Steady State Behaviour of Porous CGO-Based MIEC Anodes.” Physical Chemistry Chemical Physics, vol. 23, no. 40, 2021, pp. 23042–74, https://doi.org/10.1039/D1CP01962G.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.