Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-26055
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarmet, Philip-
dc.contributor.authorHocker, Thomas-
dc.contributor.authorBoiger, Gernot K.-
dc.contributor.authorGrolig, Jan G.-
dc.contributor.authorBausinger, Holger-
dc.contributor.authorMai, Andreas-
dc.contributor.authorFingerle, Mathias-
dc.contributor.authorReeb, Sarah-
dc.contributor.authorBrader, Joseph M.-
dc.contributor.authorHolzer, Lorenz-
dc.date.accessioned2022-11-11T14:48:37Z-
dc.date.available2022-11-11T14:48:37Z-
dc.date.issued2022-07-05-
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/26055-
dc.description.abstractFully ceramic anodes such as LSTN-CGO offer some specific advantages compared to conventional cermet anodes. Ceria- and titanate-based phases are both mixed ionic and electronic conductors (MIEC), which leads to very different reaction mechanisms and associated requirements for the microstructure design compared to e.g. Ni-YSZ. Due to the MIEC-property of both solid phases, the transports of neither the electrons nor the oxygen ions are limited to a single phase. As a consequence, composite MIEC electrodes reveal a remarkable property that can be described as ‘composite conductivity’ (for electrons as well as for ions), which is much higher than the (hypothetical) single phase conductivities of the same microstructure. In composite MIEC anodes, the charge carriers can reach the reaction sites even when the volume fraction of one MIEC phase is below the percolation threshold, because the missing contiguity is automatically bridged by the second MIEC phase. The MIEC properties thus open a much larger design space for microstructure optimization of composite electrodes. In this contribution, the composite conductivities of MIEC-based anodes are systematically investigated based on virtual materials testing and stochastic modeling. For this purpose, a large number of 3D microstructures, representing systematic compositional variations of composite anodes, is created by microstructure modeling. The underlying stochastic model is fitted to experimental data from FIB-SEM tomography. For the fitting of the stochastic model, digital twins of the tomography data are created using the methodology of gaussian random fields. By interpolation between and beyond the digital twin compositions, the stochastic model then allows to create numerous virtual 3D microstructures with different compositions, but with realistic properties. The effect of microstructure variation on the composite conductivity is then determined with transport simulations for each 3D microstructure. Furthermore, the corresponding microstructure effects on the cell-performance are determined with a Multiphysics model that describes the anode reaction mechanism. Especially the impact of the composite conductivities on the cell performance is studied in detail. Finally, microstructure design regions are discussed and compared for three different anode materials systems: titanate-CGO (with composite conductivities), Ni-YSZ (with single-phase conductivities), Ni-CGO (with single-phase ionic and composite electronic conductivities).de_CH
dc.language.isoende_CH
dc.publisherZHAW Zürcher Hochschule für Angewandte Wissenschaftende_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectEFCF2022de_CH
dc.subjectSOFCde_CH
dc.subjectCGOde_CH
dc.subjectTitanatesde_CH
dc.subjectDigital microstructure designde_CH
dc.subjectStochastic microstructure digital twinde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleComposite conductivity of MIEC-based SOFC anodes : implications for microstructure optimizationde_CH
dc.typeKonferenz: Paperde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
zhaw.publisher.placeWinterthurde_CH
dc.identifier.doi10.21256/zhaw-26055-
zhaw.conference.details15th European SOFC & SOE Forum 2022, Lucerne, Switzerland, 5-8 July 2022de_CH
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.publication.reviewPeer review (Abstract)de_CH
zhaw.webfeedMultiphysics Modelingde_CH
zhaw.funding.zhawVersatile oxide fuel cell microstructures employing WGS active titanate anode current collectors compatible to ferritic stainless steel interconnects (VOLTA)de_CH
zhaw.funding.zhawGeoCloud – Simulation Software for Cloud-based Digital Microstructure Design of New Fuel Cell Materialsde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2022_Marme-etal_Composite-conductivity-MIEC-based-SOFC-anodes.pdf1.59 MBAdobe PDFThumbnail
View/Open
Show simple item record
Marmet, P., Hocker, T., Boiger, G. K., Grolig, J. G., Bausinger, H., Mai, A., Fingerle, M., Reeb, S., Brader, J. M., & Holzer, L. (2022, July 5). Composite conductivity of MIEC-based SOFC anodes : implications for microstructure optimization. 15th European SOFC & SOE Forum 2022, Lucerne, Switzerland, 5-8 July 2022. https://doi.org/10.21256/zhaw-26055
Marmet, P. et al. (2022) ‘Composite conductivity of MIEC-based SOFC anodes : implications for microstructure optimization’, in 15th European SOFC & SOE Forum 2022, Lucerne, Switzerland, 5-8 July 2022. Winterthur: ZHAW Zürcher Hochschule für Angewandte Wissenschaften. Available at: https://doi.org/10.21256/zhaw-26055.
P. Marmet et al., “Composite conductivity of MIEC-based SOFC anodes : implications for microstructure optimization,” in 15th European SOFC & SOE Forum 2022, Lucerne, Switzerland, 5-8 July 2022, Jul. 2022. doi: 10.21256/zhaw-26055.
MARMET, Philip, Thomas HOCKER, Gernot K. BOIGER, Jan G. GROLIG, Holger BAUSINGER, Andreas MAI, Mathias FINGERLE, Sarah REEB, Joseph M. BRADER und Lorenz HOLZER, 2022. Composite conductivity of MIEC-based SOFC anodes : implications for microstructure optimization. In: 15th European SOFC & SOE Forum 2022, Lucerne, Switzerland, 5-8 July 2022. Conference paper. Winterthur: ZHAW Zürcher Hochschule für Angewandte Wissenschaften. 5 Juli 2022
Marmet, Philip, Thomas Hocker, Gernot K. Boiger, Jan G. Grolig, Holger Bausinger, Andreas Mai, Mathias Fingerle, Sarah Reeb, Joseph M. Brader, and Lorenz Holzer. 2022. “Composite Conductivity of MIEC-Based SOFC Anodes : Implications for Microstructure Optimization.” Conference paper. In 15th European SOFC & SOE Forum 2022, Lucerne, Switzerland, 5-8 July 2022. Winterthur: ZHAW Zürcher Hochschule für Angewandte Wissenschaften. https://doi.org/10.21256/zhaw-26055.
Marmet, Philip, et al. “Composite Conductivity of MIEC-Based SOFC Anodes : Implications for Microstructure Optimization.” 15th European SOFC & SOE Forum 2022, Lucerne, Switzerland, 5-8 July 2022, ZHAW Zürcher Hochschule für Angewandte Wissenschaften, 2022, https://doi.org/10.21256/zhaw-26055.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.