Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-26342
Publication type: Article in scientific journal
Type of review: Peer review (publication)
Title: CFD modelling of a wave-mixed bioreactor with complex geometry and two degrees of freedom motion
Authors: Seidel, Stefan
Maschke, Rüdiger
Kraume, Matthias
Eibl-Schindler, Regine
Eibl, Dieter
et. al: No
DOI: 10.3389/fceng.2022.1021416
10.21256/zhaw-26342
Published in: Frontiers in Chemical Engineering
Volume(Issue): 4
Issue: 1021416
Issue Date: 20-Oct-2022
Publisher / Ed. Institution: Frontiers Research Foundation
ISSN: 2673-2718
Language: English
Subjects: 3D-Scan; Bioengineering characterization; CELL-tainer; Computational fluid dynamics; Mixing time; Motion capturing; Oxygen mass transfer coefficient; Specific power input
Subject (DDC): 660: Chemical engineering
Abstract: Optimizing bioprocesses requires an in-depth understanding, from a bioengineering perspective, of the cultivation systems used. A bioengineering characterization is typically performed via experimental or numerical methods, which are particularly well-established for stirred bioreactors. For unstirred, non-rigid systems such as wave-mixed bioreactors, numerical methods prove to be problematic, as often only simplified geometries and motions can be assumed. In this work, a general approach for the numerical characterization of non-stirred cultivation systems is demonstrated using the CELL-tainer bioreactor with two degree of freedom motion as an example. In a first step, the motion is recorded via motion capturing, and a 3D model of the culture bag geometry is generated via 3D-scanning. Subsequently, the bioreactor is characterized with respect to mixing time, and oxygen transfer rate, as well as specific power input and temporal Kolmogorov length scale distribution. The results demonstrate that the CELL-tainer with two degrees of freedom outperforms classic wave-mixed bioreactors in terms of oxygen transport. In addition, it was shown that in the cell culture version of the CELL-tainer, the critical Kolmogorov length is not surpassed in any simulation.
URI: https://digitalcollection.zhaw.ch/handle/11475/26342
Fulltext version: Published version
License (according to publishing contract): CC BY 4.0: Attribution 4.0 International
Departement: Life Sciences and Facility Management
Organisational Unit: Institute of Chemistry and Biotechnology (ICBT)
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
File Description SizeFormat 
2022_Seidel-etal_CFD-modelling-wave-mixed-bioreactor-with-complex-geometry_fceng.pdf4.21 MBAdobe PDFThumbnail
View/Open
Show full item record
Seidel, S., Maschke, R., Kraume, M., Eibl-Schindler, R., & Eibl, D. (2022). CFD modelling of a wave-mixed bioreactor with complex geometry and two degrees of freedom motion. Frontiers in Chemical Engineering, 4(1021416). https://doi.org/10.3389/fceng.2022.1021416
Seidel, S. et al. (2022) ‘CFD modelling of a wave-mixed bioreactor with complex geometry and two degrees of freedom motion’, Frontiers in Chemical Engineering, 4(1021416). Available at: https://doi.org/10.3389/fceng.2022.1021416.
S. Seidel, R. Maschke, M. Kraume, R. Eibl-Schindler, and D. Eibl, “CFD modelling of a wave-mixed bioreactor with complex geometry and two degrees of freedom motion,” Frontiers in Chemical Engineering, vol. 4, no. 1021416, Oct. 2022, doi: 10.3389/fceng.2022.1021416.
SEIDEL, Stefan, Rüdiger MASCHKE, Matthias KRAUME, Regine EIBL-SCHINDLER und Dieter EIBL, 2022. CFD modelling of a wave-mixed bioreactor with complex geometry and two degrees of freedom motion. Frontiers in Chemical Engineering. 20 Oktober 2022. Bd. 4, Nr. 1021416. DOI 10.3389/fceng.2022.1021416
Seidel, Stefan, Rüdiger Maschke, Matthias Kraume, Regine Eibl-Schindler, and Dieter Eibl. 2022. “CFD Modelling of a Wave-Mixed Bioreactor with Complex Geometry and Two Degrees of Freedom Motion.” Frontiers in Chemical Engineering 4 (1021416). https://doi.org/10.3389/fceng.2022.1021416.
Seidel, Stefan, et al. “CFD Modelling of a Wave-Mixed Bioreactor with Complex Geometry and Two Degrees of Freedom Motion.” Frontiers in Chemical Engineering, vol. 4, no. 1021416, Oct. 2022, https://doi.org/10.3389/fceng.2022.1021416.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.