Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-3696
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBoiger, Gernot Kurt-
dc.date.accessioned2018-05-29T13:33:55Z-
dc.date.available2018-05-29T13:33:55Z-
dc.date.issued2016-
dc.identifier.issn1750-9548de_CH
dc.identifier.issn2048-3961de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/6201-
dc.description.abstractIn order to study the powder coating process of metal substrates, a comprehensive, numerical 3D Eulerian-LaGrangian model, featuring two particle sub-models, has been developed. The model considers the effects of electro-static, fluid-dynamic and gravity forces. The code has been implemented in C++ within the open source CFD platform OpenFoamĀ®, is transient in nature with respect to the applied LaGrangian particle implementation and the electro-static field calculation and is stationary regarding fluid-dynamic phenomena. Qualitative validation of the developed solver has already been achieved by comparison to simple coating experiments and will hereby be presented alongside a thorough description of the model itself. Upon combining knowledge of the relevant dimensionless groups and the numerical model, a dimensionless chart, representing all possible states of coating, was populated with comprehensive, exemplary cases, which are shown here as well.de_CH
dc.language.isoende_CH
dc.publisherInternational Society of Multiphysicsde_CH
dc.relation.ispartofThe International Journal of Multiphysicsde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectCoatingde_CH
dc.subjectParticlede_CH
dc.subjectLaGrangiande_CH
dc.subjectOpenFoamde_CH
dc.subject.ddc530: Physikde_CH
dc.titleEulerian-LaGrangian model of particle laden flows and deposition effects in electro-static fields based on OpenFoamde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.21256/zhaw-3696-
dc.identifier.doi10.21152/1750-9548.10.2.177de_CH
zhaw.funding.euNode_CH
zhaw.issue2de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end194de_CH
zhaw.pages.start177de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume10de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
CHARACTERIZATION OF PARTICLE MOTION AND DEPOSITION BEHAVIOUR IN ELECTRO-STATIC FIELDS.pdf1.31 MBAdobe PDFThumbnail
View/Open
Show simple item record
Boiger, G. K. (2016). Eulerian-LaGrangian model of particle laden flows and deposition effects in electro-static fields based on OpenFoam. The International Journal of Multiphysics, 10(2), 177–194. https://doi.org/10.21256/zhaw-3696
Boiger, G.K. (2016) ‘Eulerian-LaGrangian model of particle laden flows and deposition effects in electro-static fields based on OpenFoam’, The International Journal of Multiphysics, 10(2), pp. 177–194. Available at: https://doi.org/10.21256/zhaw-3696.
G. K. Boiger, “Eulerian-LaGrangian model of particle laden flows and deposition effects in electro-static fields based on OpenFoam,” The International Journal of Multiphysics, vol. 10, no. 2, pp. 177–194, 2016, doi: 10.21256/zhaw-3696.
BOIGER, Gernot Kurt, 2016. Eulerian-LaGrangian model of particle laden flows and deposition effects in electro-static fields based on OpenFoam. The International Journal of Multiphysics. 2016. Bd. 10, Nr. 2, S. 177–194. DOI 10.21256/zhaw-3696
Boiger, Gernot Kurt. 2016. “Eulerian-LaGrangian Model of Particle Laden Flows and Deposition Effects in Electro-Static Fields Based on OpenFoam.” The International Journal of Multiphysics 10 (2): 177–94. https://doi.org/10.21256/zhaw-3696.
Boiger, Gernot Kurt. “Eulerian-LaGrangian Model of Particle Laden Flows and Deposition Effects in Electro-Static Fields Based on OpenFoam.” The International Journal of Multiphysics, vol. 10, no. 2, 2016, pp. 177–94, https://doi.org/10.21256/zhaw-3696.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.