Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-3312
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDavid, Robert O.-
dc.contributor.authorMarcolli, Claudia-
dc.contributor.authorFahrni, Jonas-
dc.contributor.authorQiu, Yuqing-
dc.contributor.authorPerez Sirkin, Yamila A.-
dc.contributor.authorMolinero, Valeria-
dc.contributor.authorMahrt, Fabian-
dc.contributor.authorBrühwiler, Dominik-
dc.contributor.authorLohmann, Ulrike-
dc.contributor.authorKanji, Zamin A.-
dc.date.accessioned2019-04-26T17:28:36Z-
dc.date.available2019-04-26T17:28:36Z-
dc.date.issued2019-
dc.identifier.issn0027-8424de_CH
dc.identifier.issn1091-6490de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/16910-
dc.description.abstractIce nucleation in the atmosphere influences cloud properties, altering precipitation and the radiative balance, ultimately regulating Earth's climate. An accepted ice nucleation pathway, known as deposition nucleation, assumes a direct transition of water from the vapor to the ice phase, without an intermediate liquid phase. However, studies have shown that nucleation occurs through a liquid phase in porous particles with narrow cracks or surface imperfections where the condensation of liquid below water saturation can occur, questioning the validity of deposition nucleation. We show that deposition nucleation cannot explain the strongly enhanced ice nucleation efficiency of porous compared with nonporous particles at temperatures below -40 °C and the absence of ice nucleation below water saturation at -35 °C. Using classical nucleation theory (CNT) and molecular dynamics simulations (MDS), we show that a network of closely spaced pores is necessary to overcome the barrier for macroscopic ice-crystal growth from narrow cylindrical pores. In the absence of pores, CNT predicts that the nucleation barrier is insurmountable, consistent with the absence of ice formation in MDS. Our results confirm that pore condensation and freezing (PCF), i.e., a mechanism of ice formation that proceeds via liquid water condensation in pores, is a dominant pathway for atmospheric ice nucleation below water saturation. We conclude that the ice nucleation activity of particles in the cirrus regime is determined by the porosity and wettability of pores. PCF represents a mechanism by which porous particles like dust could impact cloud radiative forcing and, thus, the climate via ice cloud formation.de_CH
dc.language.isoende_CH
dc.publisherNational Academy of Sciencesde_CH
dc.relation.ispartofProceedings of the National Academy of Sciences of the United States of Americade_CH
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/de_CH
dc.subjectCirrusde_CH
dc.subjectCloudde_CH
dc.subjectDeposition nucleationde_CH
dc.subjectIce nucleationde_CH
dc.subjectPore condensation and freezingde_CH
dc.subject.ddc551: Geologie und Hydrologiede_CH
dc.titlePore condensation and freezing is responsible for ice formation below water saturation for porous particlesde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Chemie und Biotechnologie (ICBT)de_CH
dc.identifier.doi10.21256/zhaw-3312-
dc.identifier.doi10.1073/pnas.1813647116de_CH
dc.identifier.pmid30948638de_CH
zhaw.funding.euNode_CH
zhaw.issue17de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end8189de_CH
zhaw.pages.start8184de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume116de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.funding.snf156581de_CH
zhaw.webfeedFunktionsmaterialien und Nanotechnologiede_CH
zhaw.webfeedPolymerchemiede_CH
zhaw.funding.zhawUntersuchung der Eisbildungsmechanismen in der Atmosphärede_CH
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
File Description SizeFormat 
8184.full.pdf1.47 MBAdobe PDFThumbnail
View/Open
Show simple item record
David, R. O., Marcolli, C., Fahrni, J., Qiu, Y., Perez Sirkin, Y. A., Molinero, V., Mahrt, F., Brühwiler, D., Lohmann, U., & Kanji, Z. A. (2019). Pore condensation and freezing is responsible for ice formation below water saturation for porous particles. Proceedings of the National Academy of Sciences of the United States of America, 116(17), 8184–8189. https://doi.org/10.21256/zhaw-3312
David, R.O. et al. (2019) ‘Pore condensation and freezing is responsible for ice formation below water saturation for porous particles’, Proceedings of the National Academy of Sciences of the United States of America, 116(17), pp. 8184–8189. Available at: https://doi.org/10.21256/zhaw-3312.
R. O. David et al., “Pore condensation and freezing is responsible for ice formation below water saturation for porous particles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 17, pp. 8184–8189, 2019, doi: 10.21256/zhaw-3312.
DAVID, Robert O., Claudia MARCOLLI, Jonas FAHRNI, Yuqing QIU, Yamila A. PEREZ SIRKIN, Valeria MOLINERO, Fabian MAHRT, Dominik BRÜHWILER, Ulrike LOHMANN und Zamin A. KANJI, 2019. Pore condensation and freezing is responsible for ice formation below water saturation for porous particles. Proceedings of the National Academy of Sciences of the United States of America. 2019. Bd. 116, Nr. 17, S. 8184–8189. DOI 10.21256/zhaw-3312
David, Robert O., Claudia Marcolli, Jonas Fahrni, Yuqing Qiu, Yamila A. Perez Sirkin, Valeria Molinero, Fabian Mahrt, Dominik Brühwiler, Ulrike Lohmann, and Zamin A. Kanji. 2019. “Pore Condensation and Freezing Is Responsible for Ice Formation below Water Saturation for Porous Particles.” Proceedings of the National Academy of Sciences of the United States of America 116 (17): 8184–89. https://doi.org/10.21256/zhaw-3312.
David, Robert O., et al. “Pore Condensation and Freezing Is Responsible for Ice Formation below Water Saturation for Porous Particles.” Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 17, 2019, pp. 8184–89, https://doi.org/10.21256/zhaw-3312.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.