Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-23461
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPretzner, Barbara-
dc.contributor.authorMaschke, Rüdiger-
dc.contributor.authorHaiderer, Claudia-
dc.contributor.authorJohn, Gernot T.-
dc.contributor.authorHerwig, Christoph-
dc.contributor.authorSykacek, Peter-
dc.date.accessioned2021-11-11T11:53:02Z-
dc.date.available2021-11-11T11:53:02Z-
dc.date.issued2021-11-06-
dc.identifier.issn2306-5354de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/23461-
dc.description.abstractSimplicity renders shake flasks ideal for strain selection and substrate optimization in biotechnology. Uncertainty during initial experiments may, however, cause adverse growth conditions and mislead conclusions. Using growth models for online predictions of future biomass (BM) and the arrival of critical events like low dissolved oxygen (DO) levels or when to harvest is hence important to optimize protocols. Established knowledge that unfavorable metabolites of growing microorganisms interfere with the substrate suggests that growth dynamics and, as a consequence, the growth model parameters may vary in the course of an experiment. Predictive monitoring of shake flask cultures will therefore benefit from estimating growth model parameters in an online and adaptive manner. This paper evaluates a newly developed particle filter (PF) which is specifically tailored to the requirements of biotechnological shake flask experiments. By combining stationary accuracy with fast adaptation to change the proposed PF estimates time-varying growth model parameters from iteratively measured BM and DO sensor signals in an optimal manner. Such proposition of inferring time varying parameters of Gompertz and Logistic growth models is to our best knowledge novel and here for the first time assessed for predictive monitoring of Escherichia coli (E. coli) shake flask experiments. Assessments that mimic real-time predictions of BM and DO levels under previously untested growth conditions demonstrate the efficacy of the approach. After allowing for an initialization phase where the PF learns appropriate model parameters, we obtain accurate predictions of future BM and DO levels and important temporal characteristics like when to harvest. Statically parameterized growth models that represent the dynamics of a specific setting will in general provide poor characterizations of the dynamics when we change strain or substrate. The proposed approach is thus an important innovation for scientists working on strain characterization and substrate optimization as providing accurate forecasts will improve reproducibility and efficiency in early-stage bioprocess development.de_CH
dc.language.isoende_CH
dc.publisherMDPIde_CH
dc.relation.ispartofBioengineeringde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectParticle filterde_CH
dc.subjectShake flaskde_CH
dc.subjectGompertz functionde_CH
dc.subjectLogistic functionde_CH
dc.subjectTime series forecastingde_CH
dc.subjectCritical event predictionde_CH
dc.subjectHarvest time estimationde_CH
dc.subjectEscherichia colide_CH
dc.subjectStrain and substrate optimizationde_CH
dc.subject.ddc660.6: Biotechnologiede_CH
dc.titlePredictive monitoring of shake flask cultures with online estimated growth modelsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Chemie und Biotechnologie (ICBT)de_CH
dc.identifier.doi10.3390/bioengineering8110177de_CH
dc.identifier.doi10.21256/zhaw-23461-
zhaw.funding.euNode_CH
zhaw.issue11de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.start177de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume8de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.funding.zhawIntellishakerde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
File Description SizeFormat 
2021_Pretzner_Predictive-monitoring-shake-flask-cultures.pdf1.64 MBAdobe PDFThumbnail
View/Open
Show simple item record
Pretzner, B., Maschke, R., Haiderer, C., John, G. T., Herwig, C., & Sykacek, P. (2021). Predictive monitoring of shake flask cultures with online estimated growth models. Bioengineering, 8(11), 177. https://doi.org/10.3390/bioengineering8110177
Pretzner, B. et al. (2021) ‘Predictive monitoring of shake flask cultures with online estimated growth models’, Bioengineering, 8(11), p. 177. Available at: https://doi.org/10.3390/bioengineering8110177.
B. Pretzner, R. Maschke, C. Haiderer, G. T. John, C. Herwig, and P. Sykacek, “Predictive monitoring of shake flask cultures with online estimated growth models,” Bioengineering, vol. 8, no. 11, p. 177, Nov. 2021, doi: 10.3390/bioengineering8110177.
PRETZNER, Barbara, Rüdiger MASCHKE, Claudia HAIDERER, Gernot T. JOHN, Christoph HERWIG und Peter SYKACEK, 2021. Predictive monitoring of shake flask cultures with online estimated growth models. Bioengineering. 6 November 2021. Bd. 8, Nr. 11, S. 177. DOI 10.3390/bioengineering8110177
Pretzner, Barbara, Rüdiger Maschke, Claudia Haiderer, Gernot T. John, Christoph Herwig, and Peter Sykacek. 2021. “Predictive Monitoring of Shake Flask Cultures with Online Estimated Growth Models.” Bioengineering 8 (11): 177. https://doi.org/10.3390/bioengineering8110177.
Pretzner, Barbara, et al. “Predictive Monitoring of Shake Flask Cultures with Online Estimated Growth Models.” Bioengineering, vol. 8, no. 11, Nov. 2021, p. 177, https://doi.org/10.3390/bioengineering8110177.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.