Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-24196
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlave Reyes-Furrer, Angela-
dc.contributor.authorDe Andrade, Sonia-
dc.contributor.authorBachmann, Dominic-
dc.contributor.authorJeker, Heidi-
dc.contributor.authorSteinmann, Martin-
dc.contributor.authorAccart, Nathalie-
dc.contributor.authorDunbar, Andrew-
dc.contributor.authorRausch, Martin-
dc.contributor.authorBono, Epifania-
dc.contributor.authorRimann, Markus-
dc.contributor.authorKeller, Hansjörg-
dc.date.accessioned2022-02-04T15:14:18Z-
dc.date.available2022-02-04T15:14:18Z-
dc.date.issued2021-10-14-
dc.identifier.issn2399-3642de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/24196-
dc.description.abstractA key to enhance the low translatability of preclinical drug discovery are in vitro human three-dimensional (3D) microphysiological systems (MPS). Here, we show a new method for automated engineering of 3D human skeletal muscle models in microplates and functional compound screening to address the lack of muscle wasting disease medication. To this end, we adapted our recently described 24-well plate 3D bioprinting platform with a printhead cooling system to allow microvalve-based drop-on-demand printing of cell-laden Matrigel containing primary human muscle precursor cells. Mini skeletal muscle models develop within a week exhibiting contractile, striated myofibers aligned between two attachment posts. As an in vitro exercise model, repeated high impact stimulation of contractions for 3 h by a custom-made electrical pulse stimulation (EPS) system for 24-well plates induced interleukin-6 myokine expression and Akt hypertrophy pathway activation. Furthermore, the known muscle stimulators caffeine and Tirasemtiv acutely increase EPS-induced contractile force of the models. This validated new human muscle MPS will benefit development of drugs against muscle wasting diseases. Moreover, our Matrigel 3D bioprinting platform will allow engineering of non-self-organizing complex human 3D MPS.de_CH
dc.language.isoende_CH
dc.publisherNature Publishing Groupde_CH
dc.relation.ispartofCommunications Biologyde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectMatrigelde_CH
dc.subjectHydrogelde_CH
dc.subjectBioprintingde_CH
dc.subjectBiofabricationde_CH
dc.subjectHuman skeletal muscle modelde_CH
dc.subjectContractionde_CH
dc.subjectAlternative methodde_CH
dc.subject3Rs principlede_CH
dc.subjectDrug developmentde_CH
dc.subject.ddc610.28: Biomedizin, Biomedizinische Technikde_CH
dc.titleMatrigel 3D bioprinting of contractile human skeletal muscle models recapitulating exercise and pharmacological responsesde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Chemie und Biotechnologie (ICBT)de_CH
dc.identifier.doi10.1038/s42003-021-02691-0de_CH
dc.identifier.doi10.21256/zhaw-24196-
zhaw.funding.euNode_CH
zhaw.issue1de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.start1183de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume4de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeed3D Gewebe und Biofabrikationde_CH
zhaw.funding.zhaw3D Gewebe TEDDde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
File Description SizeFormat 
2021_Reyes-Furrer-etal_Matrigel-3D-bioprinting-skeletal-muscle.pdf3.64 MBAdobe PDFThumbnail
View/Open
Show simple item record
Alave Reyes-Furrer, A., De Andrade, S., Bachmann, D., Jeker, H., Steinmann, M., Accart, N., Dunbar, A., Rausch, M., Bono, E., Rimann, M., & Keller, H. (2021). Matrigel 3D bioprinting of contractile human skeletal muscle models recapitulating exercise and pharmacological responses. Communications Biology, 4(1), 1183. https://doi.org/10.1038/s42003-021-02691-0
Alave Reyes-Furrer, A. et al. (2021) ‘Matrigel 3D bioprinting of contractile human skeletal muscle models recapitulating exercise and pharmacological responses’, Communications Biology, 4(1), p. 1183. Available at: https://doi.org/10.1038/s42003-021-02691-0.
A. Alave Reyes-Furrer et al., “Matrigel 3D bioprinting of contractile human skeletal muscle models recapitulating exercise and pharmacological responses,” Communications Biology, vol. 4, no. 1, p. 1183, Oct. 2021, doi: 10.1038/s42003-021-02691-0.
ALAVE REYES-FURRER, Angela, Sonia DE ANDRADE, Dominic BACHMANN, Heidi JEKER, Martin STEINMANN, Nathalie ACCART, Andrew DUNBAR, Martin RAUSCH, Epifania BONO, Markus RIMANN und Hansjörg KELLER, 2021. Matrigel 3D bioprinting of contractile human skeletal muscle models recapitulating exercise and pharmacological responses. Communications Biology. 14 Oktober 2021. Bd. 4, Nr. 1, S. 1183. DOI 10.1038/s42003-021-02691-0
Alave Reyes-Furrer, Angela, Sonia De Andrade, Dominic Bachmann, Heidi Jeker, Martin Steinmann, Nathalie Accart, Andrew Dunbar, et al. 2021. “Matrigel 3D Bioprinting of Contractile Human Skeletal Muscle Models Recapitulating Exercise and Pharmacological Responses.” Communications Biology 4 (1): 1183. https://doi.org/10.1038/s42003-021-02691-0.
Alave Reyes-Furrer, Angela, et al. “Matrigel 3D Bioprinting of Contractile Human Skeletal Muscle Models Recapitulating Exercise and Pharmacological Responses.” Communications Biology, vol. 4, no. 1, Oct. 2021, p. 1183, https://doi.org/10.1038/s42003-021-02691-0.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.