Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-26342
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSeidel, Stefan-
dc.contributor.authorMaschke, Rüdiger-
dc.contributor.authorKraume, Matthias-
dc.contributor.authorEibl-Schindler, Regine-
dc.contributor.authorEibl, Dieter-
dc.date.accessioned2022-12-09T13:01:13Z-
dc.date.available2022-12-09T13:01:13Z-
dc.date.issued2022-10-20-
dc.identifier.issn2673-2718de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/26342-
dc.description.abstractOptimizing bioprocesses requires an in-depth understanding, from a bioengineering perspective, of the cultivation systems used. A bioengineering characterization is typically performed via experimental or numerical methods, which are particularly well-established for stirred bioreactors. For unstirred, non-rigid systems such as wave-mixed bioreactors, numerical methods prove to be problematic, as often only simplified geometries and motions can be assumed. In this work, a general approach for the numerical characterization of non-stirred cultivation systems is demonstrated using the CELL-tainer bioreactor with two degree of freedom motion as an example. In a first step, the motion is recorded via motion capturing, and a 3D model of the culture bag geometry is generated via 3D-scanning. Subsequently, the bioreactor is characterized with respect to mixing time, and oxygen transfer rate, as well as specific power input and temporal Kolmogorov length scale distribution. The results demonstrate that the CELL-tainer with two degrees of freedom outperforms classic wave-mixed bioreactors in terms of oxygen transport. In addition, it was shown that in the cell culture version of the CELL-tainer, the critical Kolmogorov length is not surpassed in any simulation.de_CH
dc.language.isoende_CH
dc.publisherFrontiers Research Foundationde_CH
dc.relation.ispartofFrontiers in Chemical Engineeringde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subject3D-Scande_CH
dc.subjectBioengineering characterizationde_CH
dc.subjectCELL-tainerde_CH
dc.subjectComputational fluid dynamicsde_CH
dc.subjectMixing timede_CH
dc.subjectMotion capturingde_CH
dc.subjectOxygen mass transfer coefficientde_CH
dc.subjectSpecific power inputde_CH
dc.subject.ddc660: Technische Chemiede_CH
dc.titleCFD modelling of a wave-mixed bioreactor with complex geometry and two degrees of freedom motionde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Chemie und Biotechnologie (ICBT)de_CH
dc.identifier.doi10.3389/fceng.2022.1021416de_CH
dc.identifier.doi10.21256/zhaw-26342-
zhaw.funding.euNode_CH
zhaw.issue1021416de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume4de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
zhaw.monitoring.costperiod2022de_CH
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
File Description SizeFormat 
2022_Seidel-etal_CFD-modelling-wave-mixed-bioreactor-with-complex-geometry_fceng.pdf4.21 MBAdobe PDFThumbnail
View/Open
Show simple item record
Seidel, S., Maschke, R., Kraume, M., Eibl-Schindler, R., & Eibl, D. (2022). CFD modelling of a wave-mixed bioreactor with complex geometry and two degrees of freedom motion. Frontiers in Chemical Engineering, 4(1021416). https://doi.org/10.3389/fceng.2022.1021416
Seidel, S. et al. (2022) ‘CFD modelling of a wave-mixed bioreactor with complex geometry and two degrees of freedom motion’, Frontiers in Chemical Engineering, 4(1021416). Available at: https://doi.org/10.3389/fceng.2022.1021416.
S. Seidel, R. Maschke, M. Kraume, R. Eibl-Schindler, and D. Eibl, “CFD modelling of a wave-mixed bioreactor with complex geometry and two degrees of freedom motion,” Frontiers in Chemical Engineering, vol. 4, no. 1021416, Oct. 2022, doi: 10.3389/fceng.2022.1021416.
SEIDEL, Stefan, Rüdiger MASCHKE, Matthias KRAUME, Regine EIBL-SCHINDLER und Dieter EIBL, 2022. CFD modelling of a wave-mixed bioreactor with complex geometry and two degrees of freedom motion. Frontiers in Chemical Engineering. 20 Oktober 2022. Bd. 4, Nr. 1021416. DOI 10.3389/fceng.2022.1021416
Seidel, Stefan, Rüdiger Maschke, Matthias Kraume, Regine Eibl-Schindler, and Dieter Eibl. 2022. “CFD Modelling of a Wave-Mixed Bioreactor with Complex Geometry and Two Degrees of Freedom Motion.” Frontiers in Chemical Engineering 4 (1021416). https://doi.org/10.3389/fceng.2022.1021416.
Seidel, Stefan, et al. “CFD Modelling of a Wave-Mixed Bioreactor with Complex Geometry and Two Degrees of Freedom Motion.” Frontiers in Chemical Engineering, vol. 4, no. 1021416, Oct. 2022, https://doi.org/10.3389/fceng.2022.1021416.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.