Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-26804
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKnobloch, Marco C.-
dc.contributor.authorSchinkel, Lena-
dc.contributor.authorKohler, Hans-Peter E.-
dc.contributor.authorMathis, Flurin-
dc.contributor.authorKern, Susanne-
dc.contributor.authorBleiner, Davide-
dc.contributor.authorHeeb, Norbert V.-
dc.date.accessioned2023-02-06T15:06:54Z-
dc.date.available2023-02-06T15:06:54Z-
dc.date.issued2021-
dc.identifier.issn0045-6535de_CH
dc.identifier.issn1879-1298de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/26804-
dc.description.abstractStructure, reactivity and physico-chemical properties of polyhalogenated compounds determine their up-take, transport, bio-accumulation, transformation and toxicity and their environmental fate. In technical mixtures of chlorinated paraffins (CPs), these properties are distributed due to the presence of thousands of homologues. We hypothesized that roles of CP dehalogenation reactions, catalyzed by the haloalkane dehalogenase LinB, depend on structural properties of the substrates, e.g. chlorination degree and carbon-chain length. We exposed mixtures of chlorinated undecanes, dodecanes and tridecanes in-vitro to LinB from Sphingobium Indicum bacteria. These single-chain CP-materials also contain small amounts of chlorinated olefins (COs), which can be distinct by mathematical deconvolution of respective mass-spectra. With this procedure, we obtained homologue-specific transformation kinetics of substrates differing in saturation degree, chlorination degree and carbon chain-length. For all homologues, two-stage first-order kinetic models were established, which described the faster conversion of reactive material and the slower transformation of more persistent material. Half-lifes of 0.5-3.2 h and 56-162 h were determined for more reactive and more persistent CP-material. Proportions of persistent material increased steadily from 18 to 67% for lower (Cl6) to higher (Cl11) chlorinated paraffins and olefins. Conversion efficiencies decreased with increasing chlorination degree from 97 to 70%. Carbon-chain length had only minor effects on transformation rates. Hence, the conversion was faster and more efficient for lower-chlorinated material, and slower for higher-chlorinated and longer-chained CPs and COs. Current legislation has banned short-chain chlorinated paraffins (SCCPs) and forced a transition to longer-chain CPs. This may be counterproductive with regard to enzymatic transformation with LinB.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofChemospherede_CH
dc.rightshttps://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectChlorinated olefins (COs)de_CH
dc.subjectChlorinated paraffins (CPs)de_CH
dc.subjectEnzymatic dechlorinationde_CH
dc.subjectFirst-order kinetic modelde_CH
dc.subjectPersistent organic pollutants (POPs)de_CH
dc.subjectAlkenesde_CH
dc.subjectEnvironmental Monitoringde_CH
dc.subjectKineticsde_CH
dc.subjectParaffinde_CH
dc.subjectHydrocarbons, Chlorinatedde_CH
dc.subjectSphingomonadaceaede_CH
dc.subject.ddc660: Technische Chemiede_CH
dc.titleTransformation of short-chain chlorinated paraffins and olefins with the bacterial dehalogenase LinB from Sphingobium Indicum : Kinetic models for the homologue-specific conversion of reactive and persistent materialde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Chemie und Biotechnologie (ICBT)de_CH
dc.identifier.doi10.1016/j.chemosphere.2021.131199de_CH
dc.identifier.doi10.21256/zhaw-26804-
dc.identifier.pmid34153917de_CH
zhaw.funding.euNode_CH
zhaw.issue131199de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume283de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen Life Sciences und Facility Management

Show simple item record
Knobloch, M. C., Schinkel, L., Kohler, H.-P. E., Mathis, F., Kern, S., Bleiner, D., & Heeb, N. V. (2021). Transformation of short-chain chlorinated paraffins and olefins with the bacterial dehalogenase LinB from Sphingobium Indicum : Kinetic models for the homologue-specific conversion of reactive and persistent material. Chemosphere, 283(131199). https://doi.org/10.1016/j.chemosphere.2021.131199
Knobloch, M.C. et al. (2021) ‘Transformation of short-chain chlorinated paraffins and olefins with the bacterial dehalogenase LinB from Sphingobium Indicum : Kinetic models for the homologue-specific conversion of reactive and persistent material’, Chemosphere, 283(131199). Available at: https://doi.org/10.1016/j.chemosphere.2021.131199.
M. C. Knobloch et al., “Transformation of short-chain chlorinated paraffins and olefins with the bacterial dehalogenase LinB from Sphingobium Indicum : Kinetic models for the homologue-specific conversion of reactive and persistent material,” Chemosphere, vol. 283, no. 131199, 2021, doi: 10.1016/j.chemosphere.2021.131199.
KNOBLOCH, Marco C., Lena SCHINKEL, Hans-Peter E. KOHLER, Flurin MATHIS, Susanne KERN, Davide BLEINER und Norbert V. HEEB, 2021. Transformation of short-chain chlorinated paraffins and olefins with the bacterial dehalogenase LinB from Sphingobium Indicum : Kinetic models for the homologue-specific conversion of reactive and persistent material. Chemosphere. 2021. Bd. 283, Nr. 131199. DOI 10.1016/j.chemosphere.2021.131199
Knobloch, Marco C., Lena Schinkel, Hans-Peter E. Kohler, Flurin Mathis, Susanne Kern, Davide Bleiner, and Norbert V. Heeb. 2021. “Transformation of Short-Chain Chlorinated Paraffins and Olefins with the Bacterial Dehalogenase LinB from Sphingobium Indicum : Kinetic Models for the Homologue-Specific Conversion of Reactive and Persistent Material.” Chemosphere 283 (131199). https://doi.org/10.1016/j.chemosphere.2021.131199.
Knobloch, Marco C., et al. “Transformation of Short-Chain Chlorinated Paraffins and Olefins with the Bacterial Dehalogenase LinB from Sphingobium Indicum : Kinetic Models for the Homologue-Specific Conversion of Reactive and Persistent Material.” Chemosphere, vol. 283, no. 131199, 2021, https://doi.org/10.1016/j.chemosphere.2021.131199.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.