Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-29840
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSchneider, Samuel-
dc.contributor.authorSeidel, Stefan-
dc.contributor.authorSeefeldt, Andressa-
dc.contributor.authorRomang, Michael-
dc.contributor.authorKastl, Simon-
dc.contributor.authorGensel, Julia-
dc.contributor.authorNeumeyer, Thomas-
dc.contributor.authorJohn, Gernot Thomas-
dc.contributor.authorEibl, Dieter-
dc.date.accessioned2024-02-08T14:08:25Z-
dc.date.available2024-02-08T14:08:25Z-
dc.date.issued2023-11-16-
dc.identifier.issn2227-9717de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/29840-
dc.description.abstractThe development of upstream bioprocesses necessitates small, instrumented bioreactors for investigating and optimizing production processes in a cost-effective manner. Due to advances in both the equipment and the materials used in additive manufacturing, 3D printing of customized bioreactors is now in the realm of possibilities. In this study, a small-scale 3D printed bioreactor suitable for mammalian and microbial cultivations was developed, featuring a working volume of 90 mL, inline pH and dissolved oxygen probes and a levitating magnetic stirrer. Aeration channels and a sampling port were printed directly into the vessel walls. Additionally, the vessel was equipped with a 3D printed customizable optical biomass-sensor. The bioreactor’s performance was evaluated through technical characterization and proof of concept cultivations, demonstrating that mixing time and oxygen mass transfer were sufficient for cultivating mammalian as well as microbial cells at high cell densities. Specifically, an Escherichia coli fed-batch cultivation achieved a maximum OD600 of 204. Furthermore, a fed-batch cultivation of an IgG antibody-producing Chinese hamster ovary cell line reached a peak viable cell density of 10.2 × 106 cells mL−1 and a maximum product titer of 2.75 g L−1. Using a three-parameter fit, the inline biomass signal could be correlated to the corresponding offline values with satisfactory accuracy, making it possible to monitor cell growth in real-time.de_CH
dc.language.isoende_CH
dc.publisherMDPIde_CH
dc.relation.ispartofProcessesde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectAdditive manufacturingde_CH
dc.subjectChinese hamster ovary cellde_CH
dc.subjectEscherichia colide_CH
dc.subjectInline biomass sensorde_CH
dc.subjectInline optical densityde_CH
dc.subjectOnline sensorde_CH
dc.subjectSingle-use bioreactor developmentde_CH
dc.subject3D printingde_CH
dc.subject.ddc660: Technische Chemiede_CH
dc.subject.ddc670: Industrielle und handwerkliche Fertigungde_CH
dc.title3D printed, single-use bioreactor with integrated inline sensors for microbial and mammalian cell cultivation : a case studyde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Chemie und Biotechnologie (ICBT)de_CH
dc.identifier.doi10.3390/pr11113231de_CH
dc.identifier.doi10.21256/zhaw-29840-
zhaw.funding.euNode_CH
zhaw.issue11de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.start3231de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume11de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedVerfahrenstechnikde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
File Description SizeFormat 
2023_Schneider-etal_3D-printed-single-use-bioreactor-for-cell-cultivation.pdf6.59 MBAdobe PDFThumbnail
View/Open
Show simple item record
Schneider, S., Seidel, S., Seefeldt, A., Romang, M., Kastl, S., Gensel, J., Neumeyer, T., John, G. T., & Eibl, D. (2023). 3D printed, single-use bioreactor with integrated inline sensors for microbial and mammalian cell cultivation : a case study. Processes, 11(11), 3231. https://doi.org/10.3390/pr11113231
Schneider, S. et al. (2023) ‘3D printed, single-use bioreactor with integrated inline sensors for microbial and mammalian cell cultivation : a case study’, Processes, 11(11), p. 3231. Available at: https://doi.org/10.3390/pr11113231.
S. Schneider et al., “3D printed, single-use bioreactor with integrated inline sensors for microbial and mammalian cell cultivation : a case study,” Processes, vol. 11, no. 11, p. 3231, Nov. 2023, doi: 10.3390/pr11113231.
SCHNEIDER, Samuel, Stefan SEIDEL, Andressa SEEFELDT, Michael ROMANG, Simon KASTL, Julia GENSEL, Thomas NEUMEYER, Gernot Thomas JOHN und Dieter EIBL, 2023. 3D printed, single-use bioreactor with integrated inline sensors for microbial and mammalian cell cultivation : a case study. Processes. 16 November 2023. Bd. 11, Nr. 11, S. 3231. DOI 10.3390/pr11113231
Schneider, Samuel, Stefan Seidel, Andressa Seefeldt, Michael Romang, Simon Kastl, Julia Gensel, Thomas Neumeyer, Gernot Thomas John, and Dieter Eibl. 2023. “3D Printed, Single-Use Bioreactor with Integrated Inline Sensors for Microbial and Mammalian Cell Cultivation : A Case Study.” Processes 11 (11): 3231. https://doi.org/10.3390/pr11113231.
Schneider, Samuel, et al. “3D Printed, Single-Use Bioreactor with Integrated Inline Sensors for Microbial and Mammalian Cell Cultivation : A Case Study.” Processes, vol. 11, no. 11, Nov. 2023, p. 3231, https://doi.org/10.3390/pr11113231.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.