Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dürr, Oliver | - |
dc.contributor.author | Pauchard, Yves | - |
dc.contributor.author | Browarnik, Diego Hernan | - |
dc.contributor.author | Axthelm, Rebekka | - |
dc.contributor.author | Loeser, Martin | - |
dc.date.accessioned | 2018-12-17T08:16:34Z | - |
dc.date.available | 2018-12-17T08:16:34Z | - |
dc.date.issued | 2015 | - |
dc.identifier.uri | https://digitalcollection.zhaw.ch/handle/11475/13891 | - |
dc.description.abstract | In this paper we describe a fast and accurate pipeline for real-time face recognition that is based on a convolutional neural network (CNN) and requires only moderate computational resources. After training the CNN on a desktop PC we employed a Raspberry Pi, model B, for the classification procedure. Here, we reached a performance of approximately 2 frames per second and more than 97% recognition accuracy. The proposed approach outperforms all of OpenCV's algorithms with respect to both accuracy and speed and shows the applicability of recent deep learning techniques to hardware with limited computational performance. | de_CH |
dc.language.iso | en | de_CH |
dc.publisher | The Eurographics Association | de_CH |
dc.rights | Licence according to publishing contract | de_CH |
dc.subject | Face recognition | de_CH |
dc.subject | Raspberry Pi | de_CH |
dc.subject | Deep learning | de_CH |
dc.subject.ddc | 006: Spezielle Computerverfahren | de_CH |
dc.title | Deep learning on a Raspberry Pi for real time face recognition | de_CH |
dc.type | Konferenz: Poster | de_CH |
dcterms.type | Text | de_CH |
zhaw.departement | School of Engineering | de_CH |
zhaw.organisationalunit | Institut für Angewandte Informationstechnologie (InIT) | de_CH |
zhaw.organisationalunit | Institut für Datenanalyse und Prozessdesign (IDP) | de_CH |
zhaw.organisationalunit | Institute of Signal Processing and Wireless Communications (ISC) | de_CH |
dc.identifier.doi | 10.2312/egp.20151036 | de_CH |
zhaw.conference.details | Eurographics Conference (EG 2015), Zurich, 4-8 May 2015 | de_CH |
zhaw.funding.eu | No | de_CH |
zhaw.originated.zhaw | Yes | de_CH |
zhaw.pages.end | 12 | de_CH |
zhaw.pages.start | 11 | de_CH |
zhaw.publication.status | publishedVersion | de_CH |
zhaw.publication.review | Not specified | de_CH |
zhaw.title.proceedings | EG 2015 - Posters | de_CH |
Appears in collections: | Publikationen School of Engineering |
Files in This Item:
There are no files associated with this item.
Show simple item record
Dürr, O., Pauchard, Y., Browarnik, D. H., Axthelm, R., & Loeser, M. (2015). Deep learning on a Raspberry Pi for real time face recognition [Conference poster]. EG 2015 - Posters, 11–12. https://doi.org/10.2312/egp.20151036
Dürr, O. et al. (2015) ‘Deep learning on a Raspberry Pi for real time face recognition’, in EG 2015 - Posters. The Eurographics Association, pp. 11–12. Available at: https://doi.org/10.2312/egp.20151036.
O. Dürr, Y. Pauchard, D. H. Browarnik, R. Axthelm, and M. Loeser, “Deep learning on a Raspberry Pi for real time face recognition,” in EG 2015 - Posters, 2015, pp. 11–12. doi: 10.2312/egp.20151036.
DÜRR, Oliver, Yves PAUCHARD, Diego Hernan BROWARNIK, Rebekka AXTHELM und Martin LOESER, 2015. Deep learning on a Raspberry Pi for real time face recognition. In: EG 2015 - Posters. Conference poster. The Eurographics Association. 2015. S. 11–12
Dürr, Oliver, Yves Pauchard, Diego Hernan Browarnik, Rebekka Axthelm, and Martin Loeser. 2015. “Deep Learning on a Raspberry Pi for Real Time Face Recognition.” Conference poster. In EG 2015 - Posters, 11–12. The Eurographics Association. https://doi.org/10.2312/egp.20151036.
Dürr, Oliver, et al. “Deep Learning on a Raspberry Pi for Real Time Face Recognition.” EG 2015 - Posters, The Eurographics Association, 2015, pp. 11–12, https://doi.org/10.2312/egp.20151036.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.