Please use this identifier to cite or link to this item:
Publication type: Article in scientific journal
Type of review: Peer review (publication)
Title: Lagrangian model using CFD flow data to predict the current-voltage characteristics of a solid oxide fuel cell repeat unit
Authors: Meier, Christoph
Meier, Daniel
Vandercruysse, Felix
Hocker, Thomas
DOI: 10.21256/zhaw-4949
Published in: The International Journal of Multiphysics
Volume(Issue): 12
Issue: 4
Page(s): 393
Pages to: 411
Issue Date: 2018
Publisher / Ed. Institution: International Society of Multiphysics
ISSN: 1750-9548
Language: English
Subjects: SOFC; Fuel cell model
Subject (DDC): 530: Physics
Abstract: A model framework is presented to predict the current-voltage (I-U) characteristics and hence the electrical performance of a solid oxide fuel cell (SOFC) repeat unit, i. e., a planar SOFC with adjacent current collector plates. The model uses as input residence times obtained from 3D CFD data for the fuel flowing through the anodic gas channels of a current collector plate. These residence times are then used by an electrochemical model to predict the fuel conversion along different flow paths for various electrical loads. This way, the overall (I-U) behaviour of the repeat unit follows from combining the fuel conversion rates (and respective electrical currents) for the individual flow paths. Since we use a Lagrangian reference frame for the electrochemical model, for a given electrical load, only a simple time-integration of a first-order ODE is required. Therefore, this modelling approach is very efficient and well suited for extensive parameter studies, e. g., to optimise the fuel residence times with respect to the electrical performance of the repeat unit. To ensure its reliability, the model has been validated by comparison with both experimental data and other (I-U) models.
Fulltext version: Published version
License (according to publishing contract): CC BY 4.0: Attribution 4.0 International
Departement: School of Engineering
Organisational Unit: Institute of Computational Physics (ICP)
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2018_Meier_Lagrangian_model_using_CFD_flow_data_to_predict.pdf1.64 MBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.