Publication type: Article in scientific journal
Type of review: Peer review (publication)
Title: Yellow-colored electro-optic crystals as intense terahertz wave sources
Authors: Jeong, Chan-Uk
Kang, Bong Joo
Lee, Seung-Heon
Lee, Seung-Chul
Kim, Won Tae
Jazbinsek, Mojca
Yoon, Woojin
Yun, Hoseop
Kim, Dongwook
Rotermund, Fabian
Kwon, O-Pil
DOI: 10.1002/adfm.201801143
Published in: Advanced Functional Materials
Issue Date: 2018
Publisher / Ed. Institution: Wiley
ISSN: 1616-301X
1616-3028
Language: English
Subject (DDC): 530: Physics
620.11: Engineering materials
Abstract: This study presents newly developed yellow‐colored organic electro‐optic crystals to provide high terahertz (THz) wave generation efficiency. Compared with currently existing red‐ or orange‐colored electro‐optic crystals, which are used for most benchmark organic THz sources, yellow‐colored crystals have additional superior advantages for THz wave generation, e.g., higher transparency in the visible wavelength range with accompanying different phase‐matching possibilities. The new yellow‐colored crystals consist of a highly nonlinear optical 4‐(4‐hydroxystyryl)‐1‐methylpyridinium (OHP) cation, with a relatively short wavelength of maximal absorption at 390 nm in solution, and various halogen‐substituted benzenesulfonate anions, with strong secondary‐bonding ability. OHP 4‐chlorobenzenesulfonate (OHP‐CBS) crystals exhibit large off‐resonant macroscopic optical nonlinearity and high transparency, with a cut‐off wavelength for solid‐state absorption near 490 nm. OHP‐CBS crystals provide excellent THz wave generation characteristics based on optical rectification. A 0.53 mm thick OHP‐CBS crystal delivers ≈27 times higher optical‐to‐THz conversion efficiency and a much broader spectrum bandwidth compared with the standard 1.0 mm thick ZnTe at 1300 nm pumping. Particularly, compared with a benchmark organic quinolinium crystal with a similar thickness of 0.55 mm, OHP‐CBS crystals exhibit 1.7 times higher optical‐to‐THz conversion efficiency, and show a significantly different THz spectral shape.
URI: https://digitalcollection.zhaw.ch/handle/11475/15444
Fulltext version: Published version
License (according to publishing contract): Licence according to publishing contract
Departement: School of Engineering
Organisational Unit: Institute of Computational Physics (ICP)
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show full item record
Jeong, C.-U., Kang, B. J., Lee, S.-H., Lee, S.-C., Kim, W. T., Jazbinsek, M., Yoon, W., Yun, H., Kim, D., Rotermund, F., & Kwon, O.-P. (2018). Yellow-colored electro-optic crystals as intense terahertz wave sources. Advanced Functional Materials. https://doi.org/10.1002/adfm.201801143
Jeong, C.-U. et al. (2018) ‘Yellow-colored electro-optic crystals as intense terahertz wave sources’, Advanced Functional Materials [Preprint]. Available at: https://doi.org/10.1002/adfm.201801143.
C.-U. Jeong et al., “Yellow-colored electro-optic crystals as intense terahertz wave sources,” Advanced Functional Materials, 2018, doi: 10.1002/adfm.201801143.
JEONG, Chan-Uk, Bong Joo KANG, Seung-Heon LEE, Seung-Chul LEE, Won Tae KIM, Mojca JAZBINSEK, Woojin YOON, Hoseop YUN, Dongwook KIM, Fabian ROTERMUND und O-Pil KWON, 2018. Yellow-colored electro-optic crystals as intense terahertz wave sources. Advanced Functional Materials. 2018. DOI 10.1002/adfm.201801143
Jeong, Chan-Uk, Bong Joo Kang, Seung-Heon Lee, Seung-Chul Lee, Won Tae Kim, Mojca Jazbinsek, Woojin Yoon, et al. 2018. “Yellow-Colored Electro-Optic Crystals as Intense Terahertz Wave Sources.” Advanced Functional Materials. https://doi.org/10.1002/adfm.201801143.
Jeong, Chan-Uk, et al. “Yellow-Colored Electro-Optic Crystals as Intense Terahertz Wave Sources.” Advanced Functional Materials, 2018, https://doi.org/10.1002/adfm.201801143.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.