Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-15666
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAltazin, Stéphane-
dc.contributor.authorKirsch, Christoph-
dc.contributor.authorKnapp, Evelyne-
dc.contributor.authorStous, Alexandre-
dc.contributor.authorRuhstaller, Beat-
dc.date.accessioned2019-02-25T15:44:54Z-
dc.date.available2019-02-25T15:44:54Z-
dc.date.issued2018-
dc.identifier.issn0021-8979de_CH
dc.identifier.issn1089-7550de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/15666-
dc.description.abstractWe present a new approach to simulate the transport of charges across organic/organic layer interfaces in organic semiconductor devices. This approach combines the drift-diffusion formalism away from the interface with a hopping description of the charge transport in the vicinity of the interface. It has been implemented in the commercial software SETFOS allowing for fast simulations of the complete device. This new model takes into account both recombination and generation mechanisms across the interface enabling the modeling of charge-generation/recombination interfaces for the numerical simulation of tandem devices. Using this approach, it is also possible to simulate devices using 1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile as a hole-injection layer. This particular material has a very deep HOMO level (approximately 9.5 eV), which would seemingly prevent such a layer to be used as a hole-injection material in the framework of traditional drift-diffusion models.de_CH
dc.language.isodede_CH
dc.publisherAmerican Institute of Physicsde_CH
dc.relation.ispartofJournal of Applied Physicsde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subject.ddc530: Physikde_CH
dc.titleRefined drift-diffusion model for the simulation of charge transport across layer interfaces in organic semiconductor devicesde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1063/1.5043245de_CH
dc.identifier.doi10.21256/zhaw-15666-
zhaw.funding.euNode_CH
zhaw.issue13de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.start135501de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume124de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2018_Altazin-etal_Drift-diffusion-model-charge-transport.pdf1.46 MBAdobe PDFThumbnail
View/Open
Show simple item record
Altazin, S., Kirsch, C., Knapp, E., Stous, A., & Ruhstaller, B. (2018). Refined drift-diffusion model for the simulation of charge transport across layer interfaces in organic semiconductor devices. Journal of Applied Physics, 124(13), 135501. https://doi.org/10.1063/1.5043245
Altazin, S. et al. (2018) ‘Refined drift-diffusion model for the simulation of charge transport across layer interfaces in organic semiconductor devices’, Journal of Applied Physics, 124(13), p. 135501. Available at: https://doi.org/10.1063/1.5043245.
S. Altazin, C. Kirsch, E. Knapp, A. Stous, and B. Ruhstaller, “Refined drift-diffusion model for the simulation of charge transport across layer interfaces in organic semiconductor devices,” Journal of Applied Physics, vol. 124, no. 13, p. 135501, 2018, doi: 10.1063/1.5043245.
ALTAZIN, Stéphane, Christoph KIRSCH, Evelyne KNAPP, Alexandre STOUS und Beat RUHSTALLER, 2018. Refined drift-diffusion model for the simulation of charge transport across layer interfaces in organic semiconductor devices. Journal of Applied Physics. 2018. Bd. 124, Nr. 13, S. 135501. DOI 10.1063/1.5043245
Altazin, Stéphane, Christoph Kirsch, Evelyne Knapp, Alexandre Stous, and Beat Ruhstaller. 2018. “Refined drift-diffusion model for the simulation of charge transport across layer interfaces in organic semiconductor devices.” Journal of Applied Physics 124 (13): 135501. https://doi.org/10.1063/1.5043245.
Altazin, Stéphane, et al. “Refined drift-diffusion model for the simulation of charge transport across layer interfaces in organic semiconductor devices.” Journal of Applied Physics, vol. 124, no. 13, 2018, p. 135501, https://doi.org/10.1063/1.5043245.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.