Full metadata record
DC FieldValueLanguage
dc.contributor.authorLinder, Markus-
dc.contributor.authorHocker, Thomas-
dc.contributor.authorHolzer, Lorenz-
dc.contributor.authorFriedrich, K. Andreas-
dc.contributor.authorIwanschitz, Boris-
dc.contributor.authorMai, Andreas-
dc.contributor.authorSchuler, J. Andreas-
dc.date.accessioned2017-11-30T15:02:52Z-
dc.date.available2017-11-30T15:02:52Z-
dc.date.issued2014-
dc.identifier.issn0378-7753de_CH
dc.identifier.issn1873-2755de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/1635-
dc.description.abstractThe increase of ohmic losses caused by continuously growing Cr2O3 scales on metallic interconnects (MICs) is a major contribution to the degradation of SOFC stacks. Comparison of measured ohmic resistances of chromium- (CFY) and ferritic-based alloy (Crofer) MICs at 850°C in air with the growth of mean oxide scale thicknesses, obtained from SEM cross section images, reveals a non-trivial, non-linear relationship. To understand the correlation between scale evolution and resulting ohmic losses, 2D finite element (FE) simulations of electrical current distributions have been performed for a large number of real oxide scale morphologies. It turns out that typical morphologies favor nonhomogeneous electrical current distributions, where the main current flows over rather few “bridges”, i.e. local spots with relatively thin oxide scales. These current-“bridges” are the main reason for the non-linear dependence of ohmic losses on the corresponding oxide scale morphology. Combining electrical conductivity and SEM measurements with FE simulations revealed two further advantages: it permits a more reliable extrapolation of MIC-degradation data over the whole stack lifetime and it provides a method to assess the effective electrical conductivity of thermally grown Cr2O3 scales under stack operation.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofJournal of Power Sourcesde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectScale growth rate lawde_CH
dc.subjectInterconnectde_CH
dc.subjectMapde_CH
dc.subjectSolid oxide fuel cell (SOFC)de_CH
dc.subject.ddc530: Physikde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleModel-based prediction of the ohmic resistance of metallic interconnects from oxide scale growth based on scanning electron microscopyde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1016/j.jpowsour.2014.08.098de_CH
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end605de_CH
zhaw.pages.start595de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume272de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Linder, M., Hocker, T., Holzer, L., Friedrich, K. A., Iwanschitz, B., Mai, A., & Schuler, J. A. (2014). Model-based prediction of the ohmic resistance of metallic interconnects from oxide scale growth based on scanning electron microscopy. Journal of Power Sources, 272, 595–605. https://doi.org/10.1016/j.jpowsour.2014.08.098
Linder, M. et al. (2014) ‘Model-based prediction of the ohmic resistance of metallic interconnects from oxide scale growth based on scanning electron microscopy’, Journal of Power Sources, 272, pp. 595–605. Available at: https://doi.org/10.1016/j.jpowsour.2014.08.098.
M. Linder et al., “Model-based prediction of the ohmic resistance of metallic interconnects from oxide scale growth based on scanning electron microscopy,” Journal of Power Sources, vol. 272, pp. 595–605, 2014, doi: 10.1016/j.jpowsour.2014.08.098.
LINDER, Markus, Thomas HOCKER, Lorenz HOLZER, K. Andreas FRIEDRICH, Boris IWANSCHITZ, Andreas MAI und J. Andreas SCHULER, 2014. Model-based prediction of the ohmic resistance of metallic interconnects from oxide scale growth based on scanning electron microscopy. Journal of Power Sources. 2014. Bd. 272, S. 595–605. DOI 10.1016/j.jpowsour.2014.08.098
Linder, Markus, Thomas Hocker, Lorenz Holzer, K. Andreas Friedrich, Boris Iwanschitz, Andreas Mai, and J. Andreas Schuler. 2014. “Model-Based Prediction of the Ohmic Resistance of Metallic Interconnects from Oxide Scale Growth Based on Scanning Electron Microscopy.” Journal of Power Sources 272: 595–605. https://doi.org/10.1016/j.jpowsour.2014.08.098.
Linder, Markus, et al. “Model-Based Prediction of the Ohmic Resistance of Metallic Interconnects from Oxide Scale Growth Based on Scanning Electron Microscopy.” Journal of Power Sources, vol. 272, 2014, pp. 595–605, https://doi.org/10.1016/j.jpowsour.2014.08.098.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.