Full metadata record
DC FieldValueLanguage
dc.contributor.authorSafa, Yasser-
dc.contributor.authorHocker, Thomas-
dc.date.accessioned2017-11-30T15:06:35Z-
dc.date.available2017-11-30T15:06:35Z-
dc.date.issued2015-01-15-
dc.identifier.issn0307-904Xde_CH
dc.identifier.issn1872-8480de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/1636-
dc.description.abstractThe buckling of an elastic thin film is studied in the light of an energy minimization method. Specifically, a comprehensive treatment of the Rayleigh–Ritz method is presented. Detailed mechanical modelling, analytical and numerical derivation of stability criteria, physical interpretation of buckling shapes, numerical code implementation, and experimental validations of selected simulations are addressed. The thin film deflection is prescribed as a superposition of buckle functions to provide displacement field parameterizations involving trigonometric functions. An energy minimization procedure is applied to calculate the unknown coefficients to predict the buckling shape and amplitude. Critical buckling values representing the thresholds for instability transitions in the system are calculated from the eigenvalues of the Hessian of the potential energy. Comparison between simulation results and experimental measurements show the great potential of this method to predict thin film buckling. The validated model is exploited by derivation of a new design space for thin film fabrication where the post-buckling mechanics is controlled.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofApplied Mathematical Modellingde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectEnergy methodde_CH
dc.subjectThin platede_CH
dc.subjectBucklingde_CH
dc.subjectBifurcationde_CH
dc.subject.ddc500: Naturwissenschaftende_CH
dc.subject.ddc620: Ingenieurwesende_CH
dc.titleA validated energy approach for the post-buckling design of micro-fabricated thin film devicesde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1016/j.apm.2014.05.038de_CH
zhaw.funding.euNode_CH
zhaw.issue2de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end499de_CH
zhaw.pages.start483de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume39de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Safa, Y., & Hocker, T. (2015). A validated energy approach for the post-buckling design of micro-fabricated thin film devices. Applied Mathematical Modelling, 39(2), 483–499. https://doi.org/10.1016/j.apm.2014.05.038
Safa, Y. and Hocker, T. (2015) ‘A validated energy approach for the post-buckling design of micro-fabricated thin film devices’, Applied Mathematical Modelling, 39(2), pp. 483–499. Available at: https://doi.org/10.1016/j.apm.2014.05.038.
Y. Safa and T. Hocker, “A validated energy approach for the post-buckling design of micro-fabricated thin film devices,” Applied Mathematical Modelling, vol. 39, no. 2, pp. 483–499, Jan. 2015, doi: 10.1016/j.apm.2014.05.038.
SAFA, Yasser und Thomas HOCKER, 2015. A validated energy approach for the post-buckling design of micro-fabricated thin film devices. Applied Mathematical Modelling. 15 Januar 2015. Bd. 39, Nr. 2, S. 483–499. DOI 10.1016/j.apm.2014.05.038
Safa, Yasser, and Thomas Hocker. 2015. “A Validated Energy Approach for the Post-Buckling Design of Micro-Fabricated Thin Film Devices.” Applied Mathematical Modelling 39 (2): 483–99. https://doi.org/10.1016/j.apm.2014.05.038.
Safa, Yasser, and Thomas Hocker. “A Validated Energy Approach for the Post-Buckling Design of Micro-Fabricated Thin Film Devices.” Applied Mathematical Modelling, vol. 39, no. 2, Jan. 2015, pp. 483–99, https://doi.org/10.1016/j.apm.2014.05.038.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.