Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuebler, Jakob-
dc.contributor.authorVogt, Uli F.-
dc.contributor.authorHaberstock, D.-
dc.contributor.authorSfeir, J.-
dc.contributor.authorMai, Andreas-
dc.contributor.authorHocker, Thomas-
dc.contributor.authorRoos, Markus-
dc.contributor.authorHarnisch, Urs-
dc.date.accessioned2017-11-30T15:08:21Z-
dc.date.available2017-11-30T15:08:21Z-
dc.date.issued2010-10-01-
dc.identifier.issn1615-6846de_CH
dc.identifier.issn1615-6854de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/1638-
dc.description.abstractTo study possible failure modes of the Hexis Galileo solid oxide fuel cell stack, various stack components such as nickel/yttria stabilised zirconia anodes, lanthanum strontium manganese cathodes, 3 mol%-yttria stabilised zirconia electrolytes and chromium alloy metallic interconnectors have been characterised with respect to their thermo-mechanical properties. Specifically, coefficients of thermal expansion, Young's moduli, bending strengths, Poisson's ratios and fracture toughnesses have been measured. Furthermore, the temperature-dependent warpage of complete cells has been investigated by video analysis. All experimental data were taken as input parameters for a set of finite element models to analyse various thermo-mechanical phenomena on different length scales. The simulations offer an explanation for the often observed ´saddle-like´ deformations of cells at room temperature. They also show that cracks that first develop within the anode induce local tensile stresses within the electrolyte and hence represent a weakening mechanism for the cells. It is shown that the induced electrolyte stresses depend on the anode crack density. The electrolyte stresses decrease as the distances between the anode cracks become smaller.de_CH
dc.language.isoende_CH
dc.publisherWileyde_CH
dc.relation.ispartofFuel Cellsde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectFuel cellde_CH
dc.subjectThermo-mechanical stressde_CH
dc.subjectFailure mechanismde_CH
dc.subjectSOFCde_CH
dc.subject.ddc530: Physikde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleSimulation and validation of thermo-mechanical stresses in planar SOFCsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1002/fuce.201000040de_CH
zhaw.funding.euNode_CH
zhaw.issue6de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end1073de_CH
zhaw.pages.start1066de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume10de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Kuebler, J., Vogt, U. F., Haberstock, D., Sfeir, J., Mai, A., Hocker, T., Roos, M., & Harnisch, U. (2010). Simulation and validation of thermo-mechanical stresses in planar SOFCs. Fuel Cells, 10(6), 1066–1073. https://doi.org/10.1002/fuce.201000040
Kuebler, J. et al. (2010) ‘Simulation and validation of thermo-mechanical stresses in planar SOFCs’, Fuel Cells, 10(6), pp. 1066–1073. Available at: https://doi.org/10.1002/fuce.201000040.
J. Kuebler et al., “Simulation and validation of thermo-mechanical stresses in planar SOFCs,” Fuel Cells, vol. 10, no. 6, pp. 1066–1073, Oct. 2010, doi: 10.1002/fuce.201000040.
KUEBLER, Jakob, Uli F. VOGT, D. HABERSTOCK, J. SFEIR, Andreas MAI, Thomas HOCKER, Markus ROOS und Urs HARNISCH, 2010. Simulation and validation of thermo-mechanical stresses in planar SOFCs. Fuel Cells. 1 Oktober 2010. Bd. 10, Nr. 6, S. 1066–1073. DOI 10.1002/fuce.201000040
Kuebler, Jakob, Uli F. Vogt, D. Haberstock, J. Sfeir, Andreas Mai, Thomas Hocker, Markus Roos, and Urs Harnisch. 2010. “Simulation and Validation of Thermo-Mechanical Stresses in Planar SOFCs.” Fuel Cells 10 (6): 1066–73. https://doi.org/10.1002/fuce.201000040.
Kuebler, Jakob, et al. “Simulation and Validation of Thermo-Mechanical Stresses in Planar SOFCs.” Fuel Cells, vol. 10, no. 6, Oct. 2010, pp. 1066–73, https://doi.org/10.1002/fuce.201000040.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.