Publication type: Conference other
Type of review: Peer review (abstract)
Title: Simulation of contamination by exhaust emissions from docked marine vessels
Authors: Zubiaga, Asier
Khawaja, H. A.
Boiger, Gernot Kurt
et. al: No
Proceedings: Multiphysics 2019
Page(s): 33
Conference details: International Conference of Multiphysics, Dubai, UAE, 14-15 December 2019
Issue Date: 2019
Publisher / Ed. Institution: International Society of Multiphysics
ISSN: 2409-1669
Language: English
Subjects: Simulation; Exhaust emissions; CFD; OpenFoam
Subject (DDC): 363: Environmental and security problems
Abstract: Plumes emissions from industrial activities and chimneys of large boats can carry a number of pollutants to nearby cities causing a detrimental effect on the life quality and health of local citizens and ecosystems. Carbon dioxide (CO2) is the main by-product in exhaust plumes. Although it does not have any health effect, it is well-known its influence on the climate warming, in addition, the fluid-dynamics behaviour of CO2 is representative for any gas pollutant in the plume. The main pollutants are waste products of the industrial activity or the combustion processes, mainly carbon monoxide (CO), nitrogen and sulfur oxides (NOx, SOx) in gas phase and solid particulate matter. In the present work, we have made a comprehensive study of the effect that CO2 plumes from the harbour of Tromsø (Norway) have in the contamination levels in the city. We have used computational fluid dynamics modelling of CO2 transport and diffusion in air. OpenFOAM® has been used for the simulation of the gas mixture. The Navier-Stokes equation has been solved including compressibility effects of perfect gases and buoyancy effects. Turbulence effects have been treated within the k- model of the Reynolds Averaged Navier–Stokes (RANS) equations. The simulation workflow has been improved by developing a steady-state solver that overcomes the inefficiency of the transient calculation when it comes to calculate long time effects. The effects of solid pollutants will be addressed using a Lagrangian solver to describe the transport within the plume. The influence of the wind speed and direction, as well as, the height of the chimneys in the distribution of CO2 and pollutants has been studied comprehensively. The parameter studies have been run in the online platform KALEIDOSIM®. The presented results will help to evaluate the impact of the CO2 emissions in the everyday life of local citizens.
Fulltext version: Published version
License (according to publishing contract): Licence according to publishing contract
Departement: School of Engineering
Organisational Unit: Institute of Computational Physics (ICP)
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.