Full metadata record
DC FieldValueLanguage
dc.contributor.authorDiethelm, Matthias-
dc.contributor.authorGrossmann, Quirin-
dc.contributor.authorSchiller, Andreas-
dc.contributor.authorKnapp, Evelyne-
dc.contributor.authorJenatsch, Sandra-
dc.contributor.authorKawecki, Maciej-
dc.contributor.authorNüesch, Frank-
dc.contributor.authorHany, Roland-
dc.date.accessioned2020-02-25T12:38:29Z-
dc.date.available2020-02-25T12:38:29Z-
dc.date.issued2018-
dc.identifier.issn2195-1071de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/19545-
dc.description.abstractEffects of ion concentration and active layer thickness play a critical role on the performance of light‐emitting electrochemical cells. Expanding on a pioneering materials system comprising the super yellow (SY) polymer and the electrolyte trimethylolpropane ethoxylate (TMPE)/Li+CF3SO3−, it is reported that a slightly lowered salt concentration and layer thickness result in a substantial efficiency increase, and that this increase is confined to a narrow concentration and thickness range. For a film thickness of 70 nm, a blend ratio SY:TMPE:Li+CF3SO3− = 1:0.075:0.0225, and a current of 7.7 mA cm−2 the current efficacy is 11.6 cd A−1, on a par with SY light‐emitting diodes. The optimized salt content can be explained by increased exciton quenching at higher concentrations and hindered carrier injection and conduction at lower concentrations, while the optical dependence on the layer thickness is due to weak microcavity effects. A comprehensive optical modeling study is presented, which includes the doping‐induced changes of the refractive indices and self‐absorption losses due the emission–absorption overlap of intrinsic and doped SY. The analysis indicates either a thickness‐independent emitter position (EP) close to the anode or a thickness‐dependent EP, shifted to the cathode for increased thicknesses.de_CH
dc.language.isoende_CH
dc.publisherWileyde_CH
dc.relation.ispartofAdvanced Optical Materialsde_CH
dc.rightsNot specifiedde_CH
dc.subject.ddc540: Chemiede_CH
dc.titleOptimized electrolyte loading and active film thickness for sandwich polymer light-emitting electrochemical cellsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1002/adom.201801278de_CH
zhaw.funding.euNode_CH
zhaw.issue3de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume7de_CH
zhaw.publication.reviewNot specifiedde_CH
zhaw.author.additionalNode_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Diethelm, M., Grossmann, Q., Schiller, A., Knapp, E., Jenatsch, S., Kawecki, M., Nüesch, F., & Hany, R. (2018). Optimized electrolyte loading and active film thickness for sandwich polymer light-emitting electrochemical cells. Advanced Optical Materials, 7(3). https://doi.org/10.1002/adom.201801278
Diethelm, M. et al. (2018) ‘Optimized electrolyte loading and active film thickness for sandwich polymer light-emitting electrochemical cells’, Advanced Optical Materials, 7(3). Available at: https://doi.org/10.1002/adom.201801278.
M. Diethelm et al., “Optimized electrolyte loading and active film thickness for sandwich polymer light-emitting electrochemical cells,” Advanced Optical Materials, vol. 7, no. 3, 2018, doi: 10.1002/adom.201801278.
DIETHELM, Matthias, Quirin GROSSMANN, Andreas SCHILLER, Evelyne KNAPP, Sandra JENATSCH, Maciej KAWECKI, Frank NÜESCH und Roland HANY, 2018. Optimized electrolyte loading and active film thickness for sandwich polymer light-emitting electrochemical cells. Advanced Optical Materials. 2018. Bd. 7, Nr. 3. DOI 10.1002/adom.201801278
Diethelm, Matthias, Quirin Grossmann, Andreas Schiller, Evelyne Knapp, Sandra Jenatsch, Maciej Kawecki, Frank Nüesch, and Roland Hany. 2018. “Optimized Electrolyte Loading and Active Film Thickness for Sandwich Polymer Light-Emitting Electrochemical Cells.” Advanced Optical Materials 7 (3). https://doi.org/10.1002/adom.201801278.
Diethelm, Matthias, et al. “Optimized Electrolyte Loading and Active Film Thickness for Sandwich Polymer Light-Emitting Electrochemical Cells.” Advanced Optical Materials, vol. 7, no. 3, 2018, https://doi.org/10.1002/adom.201801278.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.