Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-19629
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJagielski, Jakub-
dc.contributor.authorSolari, Simon F.-
dc.contributor.authorJordan, Lucie-
dc.contributor.authorScullion, Declan-
dc.contributor.authorBlülle, Balthasar-
dc.contributor.authorLi, Yen-Ting-
dc.contributor.authorKrumeich, Frank-
dc.contributor.authorChiu, Yu-Cheng-
dc.contributor.authorRuhstaller, Beat-
dc.contributor.authorSantos, Elton J. G.-
dc.contributor.authorShih, Chih-Jen-
dc.date.accessioned2020-03-05T12:39:01Z-
dc.date.available2020-03-05T12:39:01Z-
dc.date.issued2020-01-
dc.identifier.issn2041-1723de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/19629-
dc.description.abstractMiniaturized photonic sources based on semiconducting two-dimensional (2D) materials offer new technological opportunities beyond the modern III-V platforms. For example, the quantum-confined 2D electronic structure aligns the exciton transition dipole moment parallel to the surface plane, thereby outcoupling more light to air which gives rise to high-efficiency quantum optics and electroluminescent devices. It requires scalable materials and processes to create the decoupled multi-quantum-well superlattices, in which individual 2D material layers are isolated by atomically thin quantum barriers. Here, we report decoupled multi-quantum-well superlattices comprised of the colloidal quantum wells of lead halide perovskites, with unprecedentedly ultrathin quantum barriers that screen interlayer interactions within the range of 6.5 Å. Crystallographic and 2D k-space spectroscopic analysis reveals that the transition dipole moment orientation of bright excitons in the superlattices is predominantly in-plane and independent of stacking layer and quantum barrier thickness, confirming interlayer decoupling.de_CH
dc.language.isoende_CH
dc.publisherNature Publishing Groupde_CH
dc.relation.ispartofNature Communicationsde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subject.ddc530: Physikde_CH
dc.titleScalable photonic sources using two-dimensional lead halide perovskite superlatticesde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1038/s41467-019-14084-3de_CH
dc.identifier.doi10.21256/zhaw-19629-
dc.identifier.pmid31959755de_CH
zhaw.funding.euNode_CH
zhaw.issue1de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume11de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedPhotonicsde_CH
zhaw.author.additionalNode_CH
Appears in collections:Publikationen School of Engineering

Show simple item record
Jagielski, J., Solari, S. F., Jordan, L., Scullion, D., Blülle, B., Li, Y.-T., Krumeich, F., Chiu, Y.-C., Ruhstaller, B., Santos, E. J. G., & Shih, C.-J. (2020). Scalable photonic sources using two-dimensional lead halide perovskite superlattices. Nature Communications, 11(1). https://doi.org/10.1038/s41467-019-14084-3
Jagielski, J. et al. (2020) ‘Scalable photonic sources using two-dimensional lead halide perovskite superlattices’, Nature Communications, 11(1). Available at: https://doi.org/10.1038/s41467-019-14084-3.
J. Jagielski et al., “Scalable photonic sources using two-dimensional lead halide perovskite superlattices,” Nature Communications, vol. 11, no. 1, Jan. 2020, doi: 10.1038/s41467-019-14084-3.
JAGIELSKI, Jakub, Simon F. SOLARI, Lucie JORDAN, Declan SCULLION, Balthasar BLÜLLE, Yen-Ting LI, Frank KRUMEICH, Yu-Cheng CHIU, Beat RUHSTALLER, Elton J. G. SANTOS und Chih-Jen SHIH, 2020. Scalable photonic sources using two-dimensional lead halide perovskite superlattices. Nature Communications. Januar 2020. Bd. 11, Nr. 1. DOI 10.1038/s41467-019-14084-3
Jagielski, Jakub, Simon F. Solari, Lucie Jordan, Declan Scullion, Balthasar Blülle, Yen-Ting Li, Frank Krumeich, et al. 2020. “Scalable Photonic Sources Using Two-Dimensional Lead Halide Perovskite Superlattices.” Nature Communications 11 (1). https://doi.org/10.1038/s41467-019-14084-3.
Jagielski, Jakub, et al. “Scalable Photonic Sources Using Two-Dimensional Lead Halide Perovskite Superlattices.” Nature Communications, vol. 11, no. 1, Jan. 2020, https://doi.org/10.1038/s41467-019-14084-3.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.