Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-19786
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFallah, Arash-
dc.contributor.authorGhajari, Mazdak-
dc.contributor.authorSafa, Yasser-
dc.date.accessioned2020-03-19T08:45:35Z-
dc.date.available2020-03-19T08:45:35Z-
dc.date.issued2019-12-15-
dc.identifier.issn1750-9548de_CH
dc.identifier.issn2048-3961de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/19786-
dc.descriptionAirborne Energy Initiative at SOE ZHAWde_CH
dc.description.abstractMorphing blades have been promising in lifting restrictions on rated capacity of wind turbines and improving lift-to-drag ratio for aircraft wings at higher operational angles of attack. The present study focuses on one aspect of the response of morphing blades viz. dynamic delamination. A numerical study of delamination in morphing composite blades is conducted. Both components i.e. the composite part and the stiffener are studied. The eXtended Finite Element Method (XFEM) and nonlocal continuum mechanics (peridynamics) have both been used to study fracture in the isotropic stiffener used in conjunction with the blade. As for the composite morphing blade, cohesive elements are used to represent the interlaminar weak zone and delamination has been studied under dynamic pulse loads. Intraply damage is studied using the nonlocal model as the peridynamic model is capable of addressing the problem adequately for the necessary level of sophistication. The differences and similarities between delamination patterns for impulsive, dynamic, and quasi-static loadings are appreciated and in each case detailed analyses of delamination patterns are presented. The dependence of delamination pattern on loading regime is established, however; further parametric studies are not included as they lie beyond the scope of the study. Through the use of fracture energy alone the nonlocal model is capable of capturing intra- and interlaminar fractures. The proposed modelling scheme can thus have a major impact in design applications where dynamic pulse and impact loads of all natures (accidental, extreme, service, etc.) are to be considered and may therefore be utilised in design of lightweight morphing blades and wings where delamination failure mode is an issue.de_CH
dc.language.isoende_CH
dc.publisherInternational Society of Multiphysicsde_CH
dc.relation.ispartofThe International Journal of Multiphysicsde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectAerostructurede_CH
dc.subjectHail impactde_CH
dc.subject.ddc620: Ingenieurwesende_CH
dc.titleComputational modelling of dynamic delamination in morphing composite blades and wingsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
dc.identifier.doi10.21152/1750-9548.13.4.393de_CH
dc.identifier.doi10.21256/zhaw-19786-
zhaw.funding.euNode_CH
zhaw.issue4de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end430de_CH
zhaw.pages.start393de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume13de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.funding.snf178097de_CH
zhaw.webfeedAerodynamicsde_CH
zhaw.author.additionalNode_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2019Fallah-etal_Computational-modelling_IntJournalMultiphysics.pdf1.3 MBAdobe PDFThumbnail
View/Open
Show simple item record
Fallah, A., Ghajari, M., & Safa, Y. (2019). Computational modelling of dynamic delamination in morphing composite blades and wings. The International Journal of Multiphysics, 13(4), 393–430. https://doi.org/10.21152/1750-9548.13.4.393
Fallah, A., Ghajari, M. and Safa, Y. (2019) ‘Computational modelling of dynamic delamination in morphing composite blades and wings’, The International Journal of Multiphysics, 13(4), pp. 393–430. Available at: https://doi.org/10.21152/1750-9548.13.4.393.
A. Fallah, M. Ghajari, and Y. Safa, “Computational modelling of dynamic delamination in morphing composite blades and wings,” The International Journal of Multiphysics, vol. 13, no. 4, pp. 393–430, Dec. 2019, doi: 10.21152/1750-9548.13.4.393.
FALLAH, Arash, Mazdak GHAJARI und Yasser SAFA, 2019. Computational modelling of dynamic delamination in morphing composite blades and wings. The International Journal of Multiphysics. 15 Dezember 2019. Bd. 13, Nr. 4, S. 393–430. DOI 10.21152/1750-9548.13.4.393
Fallah, Arash, Mazdak Ghajari, and Yasser Safa. 2019. “Computational Modelling of Dynamic Delamination in Morphing Composite Blades and Wings.” The International Journal of Multiphysics 13 (4): 393–430. https://doi.org/10.21152/1750-9548.13.4.393.
Fallah, Arash, et al. “Computational Modelling of Dynamic Delamination in Morphing Composite Blades and Wings.” The International Journal of Multiphysics, vol. 13, no. 4, Dec. 2019, pp. 393–430, https://doi.org/10.21152/1750-9548.13.4.393.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.