Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-1563
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBurnat, Dariusz Artur-
dc.contributor.authorKontic, Roman-
dc.contributor.authorHolzer, Lorenz-
dc.contributor.authorSteiger, Patrick-
dc.contributor.authorFerri, Davide-
dc.contributor.authorHeel, Andre-
dc.date.accessioned2018-01-18T10:45:47Z-
dc.date.available2018-01-18T10:45:47Z-
dc.date.issued2016-
dc.identifier.issn2050-7488de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/2116-
dc.description.abstractThis paper presents a proof-of-concept study and demonstrates the next generation of a “smart” catalyst material, applicable to high temperature catalysis and electro-catalysis such as gas processing and as a catalyst for solid oxide cells. A modified citrate-gel technique was developed for the synthesis of LaxSr1−1.5xTi1−yNiyO3−δ. This method allowed the synthesis of single phase materials with a high specific surface area, after the first calcination step at temperatures as low as 650°C. Up to 5 at% of nickel could be incorporated into the perovskite structure at this low calcination temperature. X-ray powder diffraction and microscopy techniques have proven the exsolution of nickel nanoclusters under low oxygen partial pressure. The amount of exsoluted nickel nanoparticles was sensitive to surface finishing, whereby much more exsoluted nanoparticles were observed on pre-treated and polished surfaces as compared to original ones. Increasing A-site deficiency leads to a larger number of nickel particles on the surface, indicating a destabilizing influence of the A-site vacancies on the B-site metal cations. Repetitive redox cycles prove that the nickel exsolution and re-integration is a fully reversible process. These materials working in a cyclic and repetitive way may overcome the drawbacks of currently used conventional catalysts used for high temperature systems and overcome major degradation issues related to catalyst poisoning and coarsening-induced aging.de_CH
dc.language.isoende_CH
dc.publisherRoyal Society of Chemistryde_CH
dc.relation.ispartofJournal of Materials Chemistry Ade_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectMapde_CH
dc.subjectSelf-regenerationde_CH
dc.subjectSmart Materialsde_CH
dc.subjectSOFCde_CH
dc.subject.ddc540: Chemiede_CH
dc.subject.ddc620.11: Werkstoffede_CH
dc.titleSmart material concept : reversible microstructural self-regeneration for catalytic applicationsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
zhaw.organisationalunitInstitute of Materials and Process Engineering (IMPE)de_CH
dc.identifier.doi10.21256/zhaw-1563-
dc.identifier.doi10.1039/C6TA03417Ade_CH
zhaw.funding.euNode_CH
zhaw.issue30de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end11948de_CH
zhaw.pages.start11939de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume4de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2016_Burnat_Smart material concept_Journal of Materials Chemistry A.pdf1.45 MBAdobe PDFThumbnail
View/Open
Show simple item record
Burnat, D. A., Kontic, R., Holzer, L., Steiger, P., Ferri, D., & Heel, A. (2016). Smart material concept : reversible microstructural self-regeneration for catalytic applications. Journal of Materials Chemistry A, 4(30), 11939–11948. https://doi.org/10.21256/zhaw-1563
Burnat, D.A. et al. (2016) ‘Smart material concept : reversible microstructural self-regeneration for catalytic applications’, Journal of Materials Chemistry A, 4(30), pp. 11939–11948. Available at: https://doi.org/10.21256/zhaw-1563.
D. A. Burnat, R. Kontic, L. Holzer, P. Steiger, D. Ferri, and A. Heel, “Smart material concept : reversible microstructural self-regeneration for catalytic applications,” Journal of Materials Chemistry A, vol. 4, no. 30, pp. 11939–11948, 2016, doi: 10.21256/zhaw-1563.
BURNAT, Dariusz Artur, Roman KONTIC, Lorenz HOLZER, Patrick STEIGER, Davide FERRI und Andre HEEL, 2016. Smart material concept : reversible microstructural self-regeneration for catalytic applications. Journal of Materials Chemistry A. 2016. Bd. 4, Nr. 30, S. 11939–11948. DOI 10.21256/zhaw-1563
Burnat, Dariusz Artur, Roman Kontic, Lorenz Holzer, Patrick Steiger, Davide Ferri, and Andre Heel. 2016. “Smart Material Concept : Reversible Microstructural Self-Regeneration for Catalytic Applications.” Journal of Materials Chemistry A 4 (30): 11939–48. https://doi.org/10.21256/zhaw-1563.
Burnat, Dariusz Artur, et al. “Smart Material Concept : Reversible Microstructural Self-Regeneration for Catalytic Applications.” Journal of Materials Chemistry A, vol. 4, no. 30, 2016, pp. 11939–48, https://doi.org/10.21256/zhaw-1563.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.