Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-22562
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMularczyk, Adrian-
dc.contributor.authorMichalski, Andreas-
dc.contributor.authorStriednig, Michael-
dc.contributor.authorHerrendörfer, Robert-
dc.contributor.authorSchmidt, Thomas J.-
dc.contributor.authorBüchi, Felix N.-
dc.contributor.authorEller, Jens-
dc.date.accessioned2021-05-27T14:17:54Z-
dc.date.available2021-05-27T14:17:54Z-
dc.date.issued2021-05-20-
dc.identifier.issn1996-1073de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/22562-
dc.descriptionThis article belongs to the Special Issue Design, Modeling, and Optimization of Novel Fuel Cell Systems.de_CH
dc.description.abstractFacilitating the proper handling of water is one of the main challenges to overcome when trying to improve fuel cell performance. Specifically, enhanced removal of liquid water from the porous gas diffusion layers (GDLs) holds a lot of potential, but has proven to be non-trivial. A main contributor to this removal process is the gaseous transport of water following evaporation inside the GDL or catalyst layer domain. Vapor transport is desired over liquid removal, as the liquid water takes up pore space otherwise available for reactant gas supply to the catalytically active sites and opens up the possibility to remove the waste heat of the cell by evaporative cooling concepts. To better understand evaporative water removal from fuel cells and facilitate the evaporative cooling concept developed at the Paul Scherrer Institute, the effect of gas speed (0.5–10 m/s), temperature (30–60 °C), and evaporation domain (0.8–10 mm) on the evaporation rate of water from a GDL (TGP-H-120, 10 wt% PTFE) has been investigated using an ex situ approach, combined with X-ray tomographic microscopy. An along-the-channel model showed good agreement with the measured values and was used to extrapolate the differential approach to larger domains and to investigate parameter variations that were not covered experimentally.de_CH
dc.language.isoende_CH
dc.publisherMDPIde_CH
dc.relation.ispartofEnergiesde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectPolymer electrolyte fuel cellde_CH
dc.subjectGDLde_CH
dc.subjectEvaporationde_CH
dc.subjectDiffusionde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleMass transport limitations of water evaporation in polymer electrolyte fuel cell gas diffusion layersde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.3390/en14102967de_CH
dc.identifier.doi10.21256/zhaw-22562-
zhaw.funding.euNode_CH
zhaw.issue10de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.start2967de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume14de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedErneuerbare Energiende_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2021_Mularczyk-etal_Mass-transport-limitations-of-water-evaporation.pdf4.73 MBAdobe PDFThumbnail
View/Open
Show simple item record
Mularczyk, A., Michalski, A., Striednig, M., Herrendörfer, R., Schmidt, T. J., Büchi, F. N., & Eller, J. (2021). Mass transport limitations of water evaporation in polymer electrolyte fuel cell gas diffusion layers. Energies, 14(10), 2967. https://doi.org/10.3390/en14102967
Mularczyk, A. et al. (2021) ‘Mass transport limitations of water evaporation in polymer electrolyte fuel cell gas diffusion layers’, Energies, 14(10), p. 2967. Available at: https://doi.org/10.3390/en14102967.
A. Mularczyk et al., “Mass transport limitations of water evaporation in polymer electrolyte fuel cell gas diffusion layers,” Energies, vol. 14, no. 10, p. 2967, May 2021, doi: 10.3390/en14102967.
MULARCZYK, Adrian, Andreas MICHALSKI, Michael STRIEDNIG, Robert HERRENDÖRFER, Thomas J. SCHMIDT, Felix N. BÜCHI und Jens ELLER, 2021. Mass transport limitations of water evaporation in polymer electrolyte fuel cell gas diffusion layers. Energies. 20 Mai 2021. Bd. 14, Nr. 10, S. 2967. DOI 10.3390/en14102967
Mularczyk, Adrian, Andreas Michalski, Michael Striednig, Robert Herrendörfer, Thomas J. Schmidt, Felix N. Büchi, and Jens Eller. 2021. “Mass Transport Limitations of Water Evaporation in Polymer Electrolyte Fuel Cell Gas Diffusion Layers.” Energies 14 (10): 2967. https://doi.org/10.3390/en14102967.
Mularczyk, Adrian, et al. “Mass Transport Limitations of Water Evaporation in Polymer Electrolyte Fuel Cell Gas Diffusion Layers.” Energies, vol. 14, no. 10, May 2021, p. 2967, https://doi.org/10.3390/en14102967.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.