Full metadata record
DC FieldValueLanguage
dc.contributor.authorFournier, Guillaume Jean Jacques-
dc.contributor.authorMeindl, Max-
dc.contributor.authorSilva, Camilo F.-
dc.contributor.authorGhirardo, Giulio-
dc.contributor.authorBothien, Mirko-
dc.contributor.authorPolifke, Wolfgang-
dc.date.accessioned2021-06-17T07:47:57Z-
dc.date.available2021-06-17T07:47:57Z-
dc.date.issued2021-09-16-
dc.identifier.otherGT2021-58947de_CH
dc.identifier.urihttps://zenodo.org/record/6546700/de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/22656-
dc.description.abstractHeavy-duty land-based gas turbines are often designed with can-annular combustors, which consist of a set of identical cans, acoustically connected on the upstream side via the compressor plenum, and, downstream, with a small annular gap located at the transition with the first turbine stage. The modeling of this cross-talk area is crucial to predict the thermo-acoustic modes of the system. Thanks to the discrete rotational symmetry, Bloch wave theory can be exploited to reduce the system to a longitudinal combustor with a complex-valued equivalent outlet reflection coefficient, which models the annular gap. The present study reviews existing low-order models based purely on geometrical parameters and compares them to 2D Helmholtz simulations. We demonstrate that the modeling of the gap as a thin annulus is not suited for can-annular combustors and that the Rayleigh conductivity model only gives qualitative agreement. We then propose an extension for the equivalent reflection coefficient that accounts not only for geometrical but also flow parameters, by means of a characteristic length. The proposed model is in excellent agreement with 2D simulations and is able to correctly capture the eigenfrequencies of the system. We then perform a Design of Experiments study that allows us to explore various configurations and build correlations for the characteristic length. Finally, we discuss the validity limits of the proposed low-order modeling approach.de_CH
dc.language.isoende_CH
dc.publisherASMEde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectThermoacousticsde_CH
dc.subjectLow-order modelingde_CH
dc.subjectCan-annularde_CH
dc.subjectGas turbinesde_CH
dc.subject.ddc530: Physikde_CH
dc.subject.ddc620: Ingenieurwesende_CH
dc.titleLow-order modeling of can-annular combustorsde_CH
dc.typeKonferenz: Paperde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Energiesysteme und Fluid-Engineering (IEFE)de_CH
dc.identifier.doi10.1115/GT2021-58947de_CH
zhaw.conference.detailsASME 2021 Turbo Expo (Turbomachinery Technical Conference & Exposition), Online, 7-11 June 2021de_CH
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.title.proceedingsProceedings of the ASME 2021 Turbo Expode_CH
zhaw.webfeedRenewable Fuelsde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Fournier, G. J. J., Meindl, M., Silva, C. F., Ghirardo, G., Bothien, M., & Polifke, W. (2021, September 16). Low-order modeling of can-annular combustors. Proceedings of the ASME 2021 Turbo Expo. https://doi.org/10.1115/GT2021-58947
Fournier, G.J.J. et al. (2021) ‘Low-order modeling of can-annular combustors’, in Proceedings of the ASME 2021 Turbo Expo. ASME. Available at: https://doi.org/10.1115/GT2021-58947.
G. J. J. Fournier, M. Meindl, C. F. Silva, G. Ghirardo, M. Bothien, and W. Polifke, “Low-order modeling of can-annular combustors,” in Proceedings of the ASME 2021 Turbo Expo, Sep. 2021. doi: 10.1115/GT2021-58947.
FOURNIER, Guillaume Jean Jacques, Max MEINDL, Camilo F. SILVA, Giulio GHIRARDO, Mirko BOTHIEN und Wolfgang POLIFKE, 2021. Low-order modeling of can-annular combustors. In: Proceedings of the ASME 2021 Turbo Expo [online]. Conference paper. ASME. 16 September 2021. Verfügbar unter: https://zenodo.org/record/6546700/
Fournier, Guillaume Jean Jacques, Max Meindl, Camilo F. Silva, Giulio Ghirardo, Mirko Bothien, and Wolfgang Polifke. 2021. “Low-Order Modeling of Can-Annular Combustors.” Conference paper. In Proceedings of the ASME 2021 Turbo Expo. ASME. https://doi.org/10.1115/GT2021-58947.
Fournier, Guillaume Jean Jacques, et al. “Low-Order Modeling of Can-Annular Combustors.” Proceedings of the ASME 2021 Turbo Expo, ASME, 2021, https://doi.org/10.1115/GT2021-58947.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.