Publication type: Article in scientific journal
Type of review: Peer review (publication)
Title: Solid‐state molecular motions in organic THz generators
Authors: Kim, Jongtaek
Park, Young Choon
Seok, Jin‐Hong
Jazbinsek, Mojca
Kwon, O‐Pil
et. al: No
DOI: 10.1002/adom.202001521
Published in: Advanced Optical Materials
Volume(Issue): 9
Issue: 4
Page(s): 2001521
Issue Date: 2020
Publisher / Ed. Institution: Wiley
ISSN: 2195-1071
Language: English
Subjects: THz photonics; Nonlinear optics; Organic crystal
Subject (DDC): 530: Physics
621.3: Electrical, communications, control engineering
Abstract: Organic nonlinear optical salt crystals are widely used as efficient broadband THz generators. Although solid state molecular motions of organic crystals can greatly influence THz generation characteristics, their origin and effects on THz photonics are not clearly identified. In this work, the origin of solid- state molecular motions of the state-of-the-art nonlinear optical organic salt crystals and their effects on THz generation characteristics are theoretically investigated. A model crystal, HMQ-TMS (2-(4-hydroxy-3-methoxystyryl)- 1-methylquinolinium 2,4,6-trimethylbenzenesulfonate) with large macroscopic optical nonlinearity, which is very attractive for intense broadband and narrowband THz wave generation, is chosen. The solid-state molecular vibrations of HMQ-TMS crystals can be classified in three frequency regions: phonon mode region, intramolecular motion region, and their mixing region. For the first time for ionic organic crystalline THz generators, the contributions of cationic chromophores and anionic matchmakers on each of vibrational modes are quantitatively separated. In addition, the influence of solid-state molecular vibrations of HMQ-TMS crystals on the generated THz spectra is investigated. These results provide an essential information for design of new organic nonlinear optical salt crystals for THz generators as well as detectors and for optimization of THz generation performance.
URI: https://digitalcollection.zhaw.ch/handle/11475/22673
Fulltext version: Published version
License (according to publishing contract): Licence according to publishing contract
Departement: School of Engineering
Organisational Unit: Institute of Computational Physics (ICP)
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show full item record
Kim, J., Park, Y. C., Seok, J.-H., Jazbinsek, M., & Kwon, O.-P. (2020). Solid‐state molecular motions in organic THz generators. Advanced Optical Materials, 9(4), 2001521. https://doi.org/10.1002/adom.202001521
Kim, J. et al. (2020) ‘Solid‐state molecular motions in organic THz generators’, Advanced Optical Materials, 9(4), p. 2001521. Available at: https://doi.org/10.1002/adom.202001521.
J. Kim, Y. C. Park, J.-H. Seok, M. Jazbinsek, and O.-P. Kwon, “Solid‐state molecular motions in organic THz generators,” Advanced Optical Materials, vol. 9, no. 4, p. 2001521, 2020, doi: 10.1002/adom.202001521.
KIM, Jongtaek, Young Choon PARK, Jin‐Hong SEOK, Mojca JAZBINSEK und O‐Pil KWON, 2020. Solid‐state molecular motions in organic THz generators. Advanced Optical Materials. 2020. Bd. 9, Nr. 4, S. 2001521. DOI 10.1002/adom.202001521
Kim, Jongtaek, Young Choon Park, Jin‐Hong Seok, Mojca Jazbinsek, and O‐Pil Kwon. 2020. “Solid‐State Molecular Motions in Organic THz Generators.” Advanced Optical Materials 9 (4): 2001521. https://doi.org/10.1002/adom.202001521.
Kim, Jongtaek, et al. “Solid‐State Molecular Motions in Organic THz Generators.” Advanced Optical Materials, vol. 9, no. 4, 2020, p. 2001521, https://doi.org/10.1002/adom.202001521.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.