Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-23529
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKeller, Lukas M.-
dc.date.accessioned2021-11-22T10:52:20Z-
dc.date.available2021-11-22T10:52:20Z-
dc.date.issued2021-
dc.identifier.issn1294-4475de_CH
dc.identifier.issn1953-8189de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/23529-
dc.description.abstractThe 3D reconstruction of the pore space in Opalinus Clay is faced with the difficulty that high-resolution imaging methods reach their limits at the nanometer-sized pores in this material. Until now it has not been possible to image the whole pore space with pore sizes that span two orders of magnitude. Therefore, it has not been possible to predict the transport properties of this material with the help computer simulations that require 3D pore structures as input. Following the concept of self-similarity, a digital pore microstructure was constructed from a real but incomplete pore microstructure. The constructed pore structure has the same pore size spectrum as measured in the laboratory. Computer simulations were used to predict capillary pressure curves during drainage, which also agree with laboratory data. It is predicted, that two-phase transport properties such as the evolution of effective permeability as well as capillary pressures during drainage depend both on transport directions, which should be considered for Opalinus Clay when assessing its suitability as host rock for nuclear waste. This directional dependence is controlled on the pore scale by a geometric anisotropy in the pore space.de_CH
dc.language.isoende_CH
dc.publisherIFP Energies nouvellesde_CH
dc.relation.ispartofOil & Gas Science and Technology – Revue d’IFP Energies nouvellesde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subject.ddc551: Geologie und Hydrologiede_CH
dc.title3D pore microstructures and computer simulation : effective permeabilities and capillary pressure during drainage in Opalinus Clayde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.2516/ogst/2021027de_CH
dc.identifier.doi10.21256/zhaw-23529-
zhaw.funding.euNode_CH
zhaw.issue44de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume76de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedMicrostructure analysisde_CH
zhaw.funding.zhawEURAD-WP-Gas: Mechanistic understanding of gas transport in clay materialsde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2021_Keller_3d-pore-microstructures-computer-simulation.pdf3.57 MBAdobe PDFThumbnail
View/Open
Show simple item record
Keller, L. M. (2021). 3D pore microstructures and computer simulation : effective permeabilities and capillary pressure during drainage in Opalinus Clay. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles, 76(44). https://doi.org/10.2516/ogst/2021027
Keller, L.M. (2021) ‘3D pore microstructures and computer simulation : effective permeabilities and capillary pressure during drainage in Opalinus Clay’, Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 76(44). Available at: https://doi.org/10.2516/ogst/2021027.
L. M. Keller, “3D pore microstructures and computer simulation : effective permeabilities and capillary pressure during drainage in Opalinus Clay,” Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, vol. 76, no. 44, 2021, doi: 10.2516/ogst/2021027.
KELLER, Lukas M., 2021. 3D pore microstructures and computer simulation : effective permeabilities and capillary pressure during drainage in Opalinus Clay. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles. 2021. Bd. 76, Nr. 44. DOI 10.2516/ogst/2021027
Keller, Lukas M. 2021. “3D Pore Microstructures and Computer Simulation : Effective Permeabilities and Capillary Pressure during Drainage in Opalinus Clay.” Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles 76 (44). https://doi.org/10.2516/ogst/2021027.
Keller, Lukas M. “3D Pore Microstructures and Computer Simulation : Effective Permeabilities and Capillary Pressure during Drainage in Opalinus Clay.” Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles, vol. 76, no. 44, 2021, https://doi.org/10.2516/ogst/2021027.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.