Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-24719
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMourouga, Gaël-
dc.contributor.authorSchärer, Roman P.-
dc.contributor.authorYang, Xian-
dc.contributor.authorJanoschka, Tobias-
dc.contributor.authorSchmidt, Thomas J.-
dc.contributor.authorSchumacher, Jürgen O.-
dc.date.accessioned2022-03-31T08:52:18Z-
dc.date.available2022-03-31T08:52:18Z-
dc.date.issued2022-
dc.identifier.issn0013-4686de_CH
dc.identifier.issn1873-3859de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/24719-
dc.description.abstractAqueous organic redox-flow batteries are an emerging technological solution in the field of grid-scale energy storage, owing to their long lifetime, safety, chemical flexibility, potential for low cost and environmental friendliness. In this work we present a physics-based dimensionality reduced model for the performance prediction of aqueous organic redox flow batteries. The model allows for fast evaluations of the cell voltage and power density, which are expressed explicitly in terms of the electric current density and state of charge. The model takes into consideration important phenomena, such as the activation and concentration overpotentials in the electrodes as well as the non-negligible electro-osmotic drag of water through the membrane. A sensitivity analysis of the model indicates the influence of various model parameters at different current densities on the predicted cell voltage. In this work we found the formal potentials and ohmic cell resistance to be the most critical parameters for performance prediction. Experimental parameterization and validation on cycling and polarization experiments revealed good agreement with the experiments within a predicted range of validity due to the different simplifying assumptions.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofElectrochimica Actade_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectAORFBde_CH
dc.subjectOpen-source softwarede_CH
dc.subjectSensitivity analysisde_CH
dc.subjectAll-organic chemical systemde_CH
dc.subjectPerformance predictionde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titlePhysics-based 0D-U-I-SoC cell performance model for aqueous organic redox flow batteriesde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1016/j.electacta.2022.140185de_CH
dc.identifier.doi10.21256/zhaw-24719-
zhaw.funding.euinfo:eu-repo/grantAgreement/EC/H2020/875489//Modelling for the search for new active materials for redox flow batteries/SONARde_CH
zhaw.issue140185de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume415de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedRenewable Fuelsde_CH
zhaw.funding.zhawModellierung für die Suche nach neuen aktiven Materialien für Redox-Flow-Batteriende_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2022_Mourouga-etal_0D-U-I-SoC-cell-performance-model.pdf2.81 MBAdobe PDFThumbnail
View/Open
Show simple item record
Mourouga, G., Schärer, R. P., Yang, X., Janoschka, T., Schmidt, T. J., & Schumacher, J. O. (2022). Physics-based 0D-U-I-SoC cell performance model for aqueous organic redox flow batteries. Electrochimica Acta, 415(140185). https://doi.org/10.1016/j.electacta.2022.140185
Mourouga, G. et al. (2022) ‘Physics-based 0D-U-I-SoC cell performance model for aqueous organic redox flow batteries’, Electrochimica Acta, 415(140185). Available at: https://doi.org/10.1016/j.electacta.2022.140185.
G. Mourouga, R. P. Schärer, X. Yang, T. Janoschka, T. J. Schmidt, and J. O. Schumacher, “Physics-based 0D-U-I-SoC cell performance model for aqueous organic redox flow batteries,” Electrochimica Acta, vol. 415, no. 140185, 2022, doi: 10.1016/j.electacta.2022.140185.
MOUROUGA, Gaël, Roman P. SCHÄRER, Xian YANG, Tobias JANOSCHKA, Thomas J. SCHMIDT und Jürgen O. SCHUMACHER, 2022. Physics-based 0D-U-I-SoC cell performance model for aqueous organic redox flow batteries. Electrochimica Acta. 2022. Bd. 415, Nr. 140185. DOI 10.1016/j.electacta.2022.140185
Mourouga, Gaël, Roman P. Schärer, Xian Yang, Tobias Janoschka, Thomas J. Schmidt, and Jürgen O. Schumacher. 2022. “Physics-Based 0D-U-I-SoC Cell Performance Model for Aqueous Organic Redox Flow Batteries.” Electrochimica Acta 415 (140185). https://doi.org/10.1016/j.electacta.2022.140185.
Mourouga, Gaël, et al. “Physics-Based 0D-U-I-SoC Cell Performance Model for Aqueous Organic Redox Flow Batteries.” Electrochimica Acta, vol. 415, no. 140185, 2022, https://doi.org/10.1016/j.electacta.2022.140185.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.