Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-26284
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAmirian, Mohammadreza-
dc.contributor.authorSchwenker, Friedhelm-
dc.date.accessioned2022-12-02T14:02:44Z-
dc.date.available2022-12-02T14:02:44Z-
dc.date.issued2020-
dc.identifier.issn2169-3536de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/26284-
dc.description.abstractRadial basis function neural networks (RBFs) are prime candidates for pattern classification and regression and have been used extensively in classical machine learning applications. However, RBFs have not been integrated into contemporary deep learning research and computer vision using conventional convolutional neural networks (CNNs) due to their lack of adaptability with modern architectures. In this paper, we adapt RBF networks as a classifier on top of CNNs by modifying the training process and introducing a new activation function to train modern vision architectures end-to-end for image classification. The specific architecture of RBFs enables the learning of a similarity distance metric to compare and find similar and dissimilar images. Furthermore, we demonstrate that using an RBF classifier on top of any CNN architecture provides new human-interpretable insights about the decision-making process of the models. Finally, we successfully apply RBFs to a range of CNN architectures and evaluate the results on benchmark computer vision datasets.de_CH
dc.language.isoende_CH
dc.publisherIEEEde_CH
dc.relation.ispartofIEEE Accessde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectRadial basis function neural network (RBF)de_CH
dc.subjectConvolutional neural network (CNN)de_CH
dc.subjectCNN-RBFde_CH
dc.subjectSupervised learningde_CH
dc.subjectUnsupervised learningde_CH
dc.subjectSimilarity distance metricde_CH
dc.subject.ddc006: Spezielle Computerverfahrende_CH
dc.titleRadial basis function networks for convolutional neural networks to learn similarity distance metric and improve interpretabilityde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Informatik (InIT)de_CH
dc.identifier.doi10.1109/ACCESS.2020.3007337de_CH
dc.identifier.doi10.21256/zhaw-26284-
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end123097de_CH
zhaw.pages.start123087de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume8de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Show simple item record
Amirian, M., & Schwenker, F. (2020). Radial basis function networks for convolutional neural networks to learn similarity distance metric and improve interpretability. IEEE Access, 8, 123087–123097. https://doi.org/10.1109/ACCESS.2020.3007337
Amirian, M. and Schwenker, F. (2020) ‘Radial basis function networks for convolutional neural networks to learn similarity distance metric and improve interpretability’, IEEE Access, 8, pp. 123087–123097. Available at: https://doi.org/10.1109/ACCESS.2020.3007337.
M. Amirian and F. Schwenker, “Radial basis function networks for convolutional neural networks to learn similarity distance metric and improve interpretability,” IEEE Access, vol. 8, pp. 123087–123097, 2020, doi: 10.1109/ACCESS.2020.3007337.
AMIRIAN, Mohammadreza und Friedhelm SCHWENKER, 2020. Radial basis function networks for convolutional neural networks to learn similarity distance metric and improve interpretability. IEEE Access. 2020. Bd. 8, S. 123087–123097. DOI 10.1109/ACCESS.2020.3007337
Amirian, Mohammadreza, and Friedhelm Schwenker. 2020. “Radial Basis Function Networks for Convolutional Neural Networks to Learn Similarity Distance Metric and Improve Interpretability.” IEEE Access 8: 123087–97. https://doi.org/10.1109/ACCESS.2020.3007337.
Amirian, Mohammadreza, and Friedhelm Schwenker. “Radial Basis Function Networks for Convolutional Neural Networks to Learn Similarity Distance Metric and Improve Interpretability.” IEEE Access, vol. 8, 2020, pp. 123087–97, https://doi.org/10.1109/ACCESS.2020.3007337.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.