Full metadata record
DC FieldValueLanguage
dc.contributor.authorZüfle, Simon-
dc.contributor.authorNeukom, Martin T.-
dc.contributor.authorAltazin, Stéphane-
dc.contributor.authorZinggeler, Marc-
dc.contributor.authorChrapa, Marek-
dc.contributor.authorOffermans, Ton-
dc.contributor.authorRuhstaller, Beat-
dc.date.accessioned2018-02-14T08:06:31Z-
dc.date.available2018-02-14T08:06:31Z-
dc.date.issued2015-09-
dc.identifier.issn1614-6832de_CH
dc.identifier.issn1614-6840de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/2765-
dc.description.abstractIn standard unencapsulated poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester solar cells exposed to humid air, the oxidation of the aluminum cathode is known to be a key degradation mechanism. Water that enters the device at the edges and through pinholes diffuses to the organic–electrode interface. The forming oxide acts as a thin insulating layer that gives rise to an injection/extraction barrier and leads to a loss in the device current. In order to understand this behavior in detail various steady-state, transient, and impedance measurement techniques are performed in combination with drift-diffusion simulations. With this combinatorial approach the dominant degradation mechanism is confirmed to be the development of a blocking interface layer. This layer grows laterally leading to a loss in effective area due to the rapid local oxidation of the aluminum layer. Thus by combining multiple electrical techniques and optoelectrical simulations the dominant degradation mechanism can be evaluated. The same methodology is also beneficial for more stable and efficient novel solar cells.de_CH
dc.language.isoende_CH
dc.publisherWileyde_CH
dc.relation.ispartofAdvanced Energy Materialsde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleAn effective area approach to model lateral degradation in organic solar cellsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1002/aenm.201500835de_CH
zhaw.funding.euNode_CH
zhaw.issue20de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume5de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Züfle, S., Neukom, M. T., Altazin, S., Zinggeler, M., Chrapa, M., Offermans, T., & Ruhstaller, B. (2015). An effective area approach to model lateral degradation in organic solar cells. Advanced Energy Materials, 5(20). https://doi.org/10.1002/aenm.201500835
Züfle, S. et al. (2015) ‘An effective area approach to model lateral degradation in organic solar cells’, Advanced Energy Materials, 5(20). Available at: https://doi.org/10.1002/aenm.201500835.
S. Züfle et al., “An effective area approach to model lateral degradation in organic solar cells,” Advanced Energy Materials, vol. 5, no. 20, Sep. 2015, doi: 10.1002/aenm.201500835.
ZÜFLE, Simon, Martin T. NEUKOM, Stéphane ALTAZIN, Marc ZINGGELER, Marek CHRAPA, Ton OFFERMANS und Beat RUHSTALLER, 2015. An effective area approach to model lateral degradation in organic solar cells. Advanced Energy Materials. September 2015. Bd. 5, Nr. 20. DOI 10.1002/aenm.201500835
Züfle, Simon, Martin T. Neukom, Stéphane Altazin, Marc Zinggeler, Marek Chrapa, Ton Offermans, and Beat Ruhstaller. 2015. “An Effective Area Approach to Model Lateral Degradation in Organic Solar Cells.” Advanced Energy Materials 5 (20). https://doi.org/10.1002/aenm.201500835.
Züfle, Simon, et al. “An Effective Area Approach to Model Lateral Degradation in Organic Solar Cells.” Advanced Energy Materials, vol. 5, no. 20, Sept. 2015, https://doi.org/10.1002/aenm.201500835.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.