Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-27957
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWlodarczyk, Jakub-
dc.contributor.authorBaltes, Norman-
dc.contributor.authorFriedrich, K. Andreas-
dc.contributor.authorSchumacher, Jürgen-
dc.date.accessioned2023-06-02T06:30:50Z-
dc.date.available2023-06-02T06:30:50Z-
dc.date.issued2023-05-27-
dc.identifier.issn0013-4686de_CH
dc.identifier.issn1873-3859de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/27957-
dc.description.abstractModelling and simulation is a powerful tool to support the development of novel flow cells such as electrolysers and flow batteries. Electrolytes employed in such cells often consist of aqueous solutions of highly concentrated solutes at elevated temperatures. Such conditions pose numerous challenges in conventional model parametrisation because of non-ideal behaviour of the electrolytes. The aim of this work is to study mass transport of electroactive species in highly-concentrated media. We selected the hydrogen-bromine flow battery posolyte, HBr (aq) and Br2, as an exemplary flow battery electrolyte and we leveraged chronoamperometric techniques involving ultramicroelectrodes to study diffusion and migration of bromide and bromine at high concentration and temperature. We successfully simulated the current densities of HBr/Br2 redox reactions in solutions up to 8 mol L–1 using advanced mass transport theory which agreed well with the results obtained with ultramicroelectrodes. While uncharged species transport (Br2) can be credibly modelled using conventional theories such as Fick’s law, charged species (Br–) require special treatment as the diffusion coefficient vary with concentration up to 50 % with respect to the limiting value at infinite dilution. The transport of charged species without added supporting electrolyte occurs via both migration and diffusion and the contribution of migration current may be up to 50 % of the total current. At HBr concentration  0.6 mol L–1 migration appears to be suppressed due to the “self-screening” effect of the electrolyte. Proper experimental electrolyte characterisation under operating conditions similar to the actual flow cell applications is indispensable to establish predictive models and digital twins of electrochemical devices. Straightforward transfer of concepts known in electro-analytical chemistry to flow cells modelling may lead to erroneous simulations or model overfitting.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofElectrochimica Actade_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectConcentrated electrolytede_CH
dc.subjectHydrogen-bromine flow batteryde_CH
dc.subjectMass transportde_CH
dc.subjectUltramicroelectrodede_CH
dc.subjectEnergy storagede_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleMass transport limitations in concentrated aqueous electrolyte solutions : theoretical and experimental study of the hydrogen-bromine flow battery electrolytede_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1016/j.electacta.2023.142640de_CH
dc.identifier.doi10.21256/zhaw-27957-
zhaw.funding.euinfo:eu-repo/grantAgreement/EC/H2020/765289// European Training Network to improve materials for high-performance, low-cost next- generation redox-flow batteries/FlowCampde_CH
zhaw.issue142640de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume461de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedElektrische Energiesysteme und Smart Gridsde_CH
zhaw.funding.zhawRedox Flow Battery Campusde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Show simple item record
Wlodarczyk, J., Baltes, N., Friedrich, K. A., & Schumacher, J. (2023). Mass transport limitations in concentrated aqueous electrolyte solutions : theoretical and experimental study of the hydrogen-bromine flow battery electrolyte. Electrochimica Acta, 461(142640). https://doi.org/10.1016/j.electacta.2023.142640
Wlodarczyk, J. et al. (2023) ‘Mass transport limitations in concentrated aqueous electrolyte solutions : theoretical and experimental study of the hydrogen-bromine flow battery electrolyte’, Electrochimica Acta, 461(142640). Available at: https://doi.org/10.1016/j.electacta.2023.142640.
J. Wlodarczyk, N. Baltes, K. A. Friedrich, and J. Schumacher, “Mass transport limitations in concentrated aqueous electrolyte solutions : theoretical and experimental study of the hydrogen-bromine flow battery electrolyte,” Electrochimica Acta, vol. 461, no. 142640, May 2023, doi: 10.1016/j.electacta.2023.142640.
WLODARCZYK, Jakub, Norman BALTES, K. Andreas FRIEDRICH und Jürgen SCHUMACHER, 2023. Mass transport limitations in concentrated aqueous electrolyte solutions : theoretical and experimental study of the hydrogen-bromine flow battery electrolyte. Electrochimica Acta. 27 Mai 2023. Bd. 461, Nr. 142640. DOI 10.1016/j.electacta.2023.142640
Wlodarczyk, Jakub, Norman Baltes, K. Andreas Friedrich, and Jürgen Schumacher. 2023. “Mass Transport Limitations in Concentrated Aqueous Electrolyte Solutions : Theoretical and Experimental Study of the Hydrogen-Bromine Flow Battery Electrolyte.” Electrochimica Acta 461 (142640). https://doi.org/10.1016/j.electacta.2023.142640.
Wlodarczyk, Jakub, et al. “Mass Transport Limitations in Concentrated Aqueous Electrolyte Solutions : Theoretical and Experimental Study of the Hydrogen-Bromine Flow Battery Electrolyte.” Electrochimica Acta, vol. 461, no. 142640, May 2023, https://doi.org/10.1016/j.electacta.2023.142640.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.